SUBROUTINE CUNGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          VECT
      INTEGER            INFO, K, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  CUNGBR generates one of the complex unitary matrices Q or P**H
*  determined by CGEBRD when reducing a complex matrix A to bidiagonal
*  form: A = Q * B * P**H.  Q and P**H are defined as products of
*  elementary reflectors H(i) or G(i) respectively.
*
*  If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
*  is of order M:
*  if m >= k, Q = H(1) H(2) . . . H(k) and CUNGBR returns the first n
*  columns of Q, where m >= n >= k;
*  if m < k, Q = H(1) H(2) . . . H(m-1) and CUNGBR returns Q as an
*  M-by-M matrix.
*
*  If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**H
*  is of order N:
*  if k < n, P**H = G(k) . . . G(2) G(1) and CUNGBR returns the first m
*  rows of P**H, where n >= m >= k;
*  if k >= n, P**H = G(n-1) . . . G(2) G(1) and CUNGBR returns P**H as
*  an N-by-N matrix.
*
*  Arguments
*  =========
*
*  VECT    (input) CHARACTER*1
*          Specifies whether the matrix Q or the matrix P**H is
*          required, as defined in the transformation applied by CGEBRD:
*          = 'Q':  generate Q;
*          = 'P':  generate P**H.
*
*  M       (input) INTEGER
*          The number of rows of the matrix Q or P**H to be returned.
*          M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix Q or P**H to be returned.
*          N >= 0.
*          If VECT = 'Q', M >= N >= min(M,K);
*          if VECT = 'P', N >= M >= min(N,K).
*
*  K       (input) INTEGER
*          If VECT = 'Q', the number of columns in the original M-by-K
*          matrix reduced by CGEBRD.
*          If VECT = 'P', the number of rows in the original K-by-N
*          matrix reduced by CGEBRD.
*          K >= 0.
*
*  A       (input/output) COMPLEX array, dimension (LDA,N)
*          On entry, the vectors which define the elementary reflectors,
*          as returned by CGEBRD.
*          On exit, the M-by-N matrix Q or P**H.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= M.
*
*  TAU     (input) COMPLEX array, dimension
*                                (min(M,K)) if VECT = 'Q'
*                                (min(N,K)) if VECT = 'P'
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i) or G(i), which determines Q or P**H, as
*          returned by CGEBRD in its array argument TAUQ or TAUP.
*
*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >= max(1,min(M,N)).
*          For optimum performance LWORK >= min(M,N)*NB, where NB
*          is the optimal blocksize.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ZERO, ONE
      PARAMETER          ( ZERO = ( 0.0E+0, 0.0E+0 ),
     $                   ONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, WANTQ
      INTEGER            I, IINFO, J, LWKOPT, MN, NB
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      EXTERNAL           ILAENV, LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           CUNGLQ, CUNGQR, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      WANTQ = LSAME( VECT, 'Q' )
      MN = MIN( M, N )
      LQUERY = ( LWORK.EQ.-1 )
      IF( .NOT.WANTQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( N.LT.0 .OR. ( WANTQ .AND. ( N.GT.M .OR. N.LT.MIN( M,
     $         K ) ) ) .OR. ( .NOT.WANTQ .AND. ( M.GT.N .OR. M.LT.
     $         MIN( N, K ) ) ) ) THEN
         INFO = -3
      ELSE IF( K.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -6
      ELSE IF( LWORK.LT.MAX( 1, MN ) .AND. .NOT.LQUERY ) THEN
         INFO = -9
      END IF
*
      IF( INFO.EQ.0 ) THEN
         IF( WANTQ ) THEN
            NB = ILAENV( 1, 'CUNGQR', ' ', M, N, K, -1 )
         ELSE
            NB = ILAENV( 1, 'CUNGLQ', ' ', M, N, K, -1 )
         END IF
         LWKOPT = MAX( 1, MN )*NB
         WORK( 1 ) = LWKOPT
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CUNGBR', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
*
      IF( WANTQ ) THEN
*
*        Form Q, determined by a call to CGEBRD to reduce an m-by-k
*        matrix
*
         IF( M.GE.K ) THEN
*
*           If m >= k, assume m >= n >= k
*
            CALL CUNGQR( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
*
         ELSE
*
*           If m < k, assume m = n
*
*           Shift the vectors which define the elementary reflectors one
*           column to the right, and set the first row and column of Q
*           to those of the unit matrix
*
            DO 20 J = M, 2, -1
               A( 1, J ) = ZERO
               DO 10 I = J + 1, M
                  A( I, J ) = A( I, J-1 )
   10          CONTINUE
   20       CONTINUE
            A( 1, 1 ) = ONE
            DO 30 I = 2, M
               A( I, 1 ) = ZERO
   30       CONTINUE
            IF( M.GT.1 ) THEN
*
*              Form Q(2:m,2:m)
*
               CALL CUNGQR( M-1, M-1, M-1, A( 2, 2 ), LDA, TAU, WORK,
     $                      LWORK, IINFO )
            END IF
         END IF
      ELSE
*
*        Form P', determined by a call to CGEBRD to reduce a k-by-n
*        matrix
*
         IF( K.LT.N ) THEN
*
*           If k < n, assume k <= m <= n
*
            CALL CUNGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
*
         ELSE
*
*           If k >= n, assume m = n
*
*           Shift the vectors which define the elementary reflectors one
*           row downward, and set the first row and column of P' to
*           those of the unit matrix
*
            A( 1, 1 ) = ONE
            DO 40 I = 2, N
               A( I, 1 ) = ZERO
   40       CONTINUE
            DO 60 J = 2, N
               DO 50 I = J - 1, 2, -1
                  A( I, J ) = A( I-1, J )
   50          CONTINUE
               A( 1, J ) = ZERO
   60       CONTINUE
            IF( N.GT.1 ) THEN
*
*              Form P'(2:n,2:n)
*
               CALL CUNGLQ( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
     $                      LWORK, IINFO )
            END IF
         END IF
      END IF
      WORK( 1 ) = LWKOPT
      RETURN
*
*     End of CUNGBR
*
      END