SUBROUTINE SPPSV( UPLO, N, NRHS, AP, B, LDB, INFO )
*
* -- LAPACK driver routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDB, N, NRHS
* ..
* .. Array Arguments ..
REAL AP( * ), B( LDB, * )
* ..
*
* Purpose
* =======
*
* SPPSV computes the solution to a real system of linear equations
* A * X = B,
* where A is an N-by-N symmetric positive definite matrix stored in
* packed format and X and B are N-by-NRHS matrices.
*
* The Cholesky decomposition is used to factor A as
* A = U**T* U, if UPLO = 'U', or
* A = L * L**T, if UPLO = 'L',
* where U is an upper triangular matrix and L is a lower triangular
* matrix. The factored form of A is then used to solve the system of
* equations A * X = B.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangle of A is stored;
* = 'L': Lower triangle of A is stored.
*
* N (input) INTEGER
* The number of linear equations, i.e., the order of the
* matrix A. N >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the matrix B. NRHS >= 0.
*
* AP (input/output) REAL array, dimension (N*(N+1)/2)
* On entry, the upper or lower triangle of the symmetric matrix
* A, packed columnwise in a linear array. The j-th column of A
* is stored in the array AP as follows:
* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
* See below for further details.
*
* On exit, if INFO = 0, the factor U or L from the Cholesky
* factorization A = U**T*U or A = L*L**T, in the same storage
* format as A.
*
* B (input/output) REAL array, dimension (LDB,NRHS)
* On entry, the N-by-NRHS right hand side matrix B.
* On exit, if INFO = 0, the N-by-NRHS solution matrix X.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, the leading minor of order i of A is not
* positive definite, so the factorization could not be
* completed, and the solution has not been computed.
*
* Further Details
* ===============
*
* The packed storage scheme is illustrated by the following example
* when N = 4, UPLO = 'U':
*
* Two-dimensional storage of the symmetric matrix A:
*
* a11 a12 a13 a14
* a22 a23 a24
* a33 a34 (aij = conjg(aji))
* a44
*
* Packed storage of the upper triangle of A:
*
* AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
*
* =====================================================================
*
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL SPPTRF, SPPTRS, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( NRHS.LT.0 ) THEN
INFO = -3
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -6
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SPPSV ', -INFO )
RETURN
END IF
*
* Compute the Cholesky factorization A = U'*U or A = L*L'.
*
CALL SPPTRF( UPLO, N, AP, INFO )
IF( INFO.EQ.0 ) THEN
*
* Solve the system A*X = B, overwriting B with X.
*
CALL SPPTRS( UPLO, N, NRHS, AP, B, LDB, INFO )
*
END IF
RETURN
*
* End of SPPSV
*
END