LAPACK  3.8.0
LAPACK: Linear Algebra PACKage

◆ LAPACKE_zggsvp_work()

lapack_int LAPACKE_zggsvp_work ( int  matrix_layout,
char  jobu,
char  jobv,
char  jobq,
lapack_int  m,
lapack_int  p,
lapack_int  n,
lapack_complex_double a,
lapack_int  lda,
lapack_complex_double b,
lapack_int  ldb,
double  tola,
double  tolb,
lapack_int k,
lapack_int l,
lapack_complex_double u,
lapack_int  ldu,
lapack_complex_double v,
lapack_int  ldv,
lapack_complex_double q,
lapack_int  ldq,
lapack_int iwork,
double *  rwork,
lapack_complex_double tau,
lapack_complex_double work 
)

Definition at line 36 of file lapacke_zggsvp_work.c.

48 {
49  lapack_int info = 0;
50  if( matrix_layout == LAPACK_COL_MAJOR ) {
51  /* Call LAPACK function and adjust info */
52  LAPACK_zggsvp( &jobu, &jobv, &jobq, &m, &p, &n, a, &lda, b, &ldb, &tola,
53  &tolb, k, l, u, &ldu, v, &ldv, q, &ldq, iwork, rwork,
54  tau, work, &info );
55  if( info < 0 ) {
56  info = info - 1;
57  }
58  } else if( matrix_layout == LAPACK_ROW_MAJOR ) {
59  lapack_int lda_t = MAX(1,m);
60  lapack_int ldb_t = MAX(1,p);
61  lapack_int ldq_t = MAX(1,n);
62  lapack_int ldu_t = MAX(1,m);
63  lapack_int ldv_t = MAX(1,p);
64  lapack_complex_double* a_t = NULL;
65  lapack_complex_double* b_t = NULL;
66  lapack_complex_double* u_t = NULL;
67  lapack_complex_double* v_t = NULL;
68  lapack_complex_double* q_t = NULL;
69  /* Check leading dimension(s) */
70  if( lda < n ) {
71  info = -9;
72  LAPACKE_xerbla( "LAPACKE_zggsvp_work", info );
73  return info;
74  }
75  if( ldb < n ) {
76  info = -11;
77  LAPACKE_xerbla( "LAPACKE_zggsvp_work", info );
78  return info;
79  }
80  if( ldq < n ) {
81  info = -21;
82  LAPACKE_xerbla( "LAPACKE_zggsvp_work", info );
83  return info;
84  }
85  if( ldu < m ) {
86  info = -17;
87  LAPACKE_xerbla( "LAPACKE_zggsvp_work", info );
88  return info;
89  }
90  if( ldv < m ) {
91  info = -19;
92  LAPACKE_xerbla( "LAPACKE_zggsvp_work", info );
93  return info;
94  }
95  /* Allocate memory for temporary array(s) */
96  a_t = (lapack_complex_double*)
97  LAPACKE_malloc( sizeof(lapack_complex_double) * lda_t * MAX(1,n) );
98  if( a_t == NULL ) {
100  goto exit_level_0;
101  }
102  b_t = (lapack_complex_double*)
103  LAPACKE_malloc( sizeof(lapack_complex_double) * ldb_t * MAX(1,n) );
104  if( b_t == NULL ) {
106  goto exit_level_1;
107  }
108  if( LAPACKE_lsame( jobu, 'u' ) ) {
109  u_t = (lapack_complex_double*)
111  ldu_t * MAX(1,m) );
112  if( u_t == NULL ) {
114  goto exit_level_2;
115  }
116  }
117  if( LAPACKE_lsame( jobv, 'v' ) ) {
118  v_t = (lapack_complex_double*)
120  ldv_t * MAX(1,m) );
121  if( v_t == NULL ) {
123  goto exit_level_3;
124  }
125  }
126  if( LAPACKE_lsame( jobq, 'q' ) ) {
127  q_t = (lapack_complex_double*)
129  ldq_t * MAX(1,n) );
130  if( q_t == NULL ) {
132  goto exit_level_4;
133  }
134  }
135  /* Transpose input matrices */
136  LAPACKE_zge_trans( matrix_layout, m, n, a, lda, a_t, lda_t );
137  LAPACKE_zge_trans( matrix_layout, p, n, b, ldb, b_t, ldb_t );
138  /* Call LAPACK function and adjust info */
139  LAPACK_zggsvp( &jobu, &jobv, &jobq, &m, &p, &n, a_t, &lda_t, b_t,
140  &ldb_t, &tola, &tolb, k, l, u_t, &ldu_t, v_t, &ldv_t,
141  q_t, &ldq_t, iwork, rwork, tau, work, &info );
142  if( info < 0 ) {
143  info = info - 1;
144  }
145  /* Transpose output matrices */
146  LAPACKE_zge_trans( LAPACK_COL_MAJOR, m, n, a_t, lda_t, a, lda );
147  LAPACKE_zge_trans( LAPACK_COL_MAJOR, p, n, b_t, ldb_t, b, ldb );
148  if( LAPACKE_lsame( jobu, 'u' ) ) {
149  LAPACKE_zge_trans( LAPACK_COL_MAJOR, m, m, u_t, ldu_t, u, ldu );
150  }
151  if( LAPACKE_lsame( jobv, 'v' ) ) {
152  LAPACKE_zge_trans( LAPACK_COL_MAJOR, p, m, v_t, ldv_t, v, ldv );
153  }
154  if( LAPACKE_lsame( jobq, 'q' ) ) {
155  LAPACKE_zge_trans( LAPACK_COL_MAJOR, n, n, q_t, ldq_t, q, ldq );
156  }
157  /* Release memory and exit */
158  if( LAPACKE_lsame( jobq, 'q' ) ) {
159  LAPACKE_free( q_t );
160  }
161 exit_level_4:
162  if( LAPACKE_lsame( jobv, 'v' ) ) {
163  LAPACKE_free( v_t );
164  }
165 exit_level_3:
166  if( LAPACKE_lsame( jobu, 'u' ) ) {
167  LAPACKE_free( u_t );
168  }
169 exit_level_2:
170  LAPACKE_free( b_t );
171 exit_level_1:
172  LAPACKE_free( a_t );
173 exit_level_0:
174  if( info == LAPACK_TRANSPOSE_MEMORY_ERROR ) {
175  LAPACKE_xerbla( "LAPACKE_zggsvp_work", info );
176  }
177  } else {
178  info = -1;
179  LAPACKE_xerbla( "LAPACKE_zggsvp_work", info );
180  }
181  return info;
182 }
#define LAPACK_ROW_MAJOR
Definition: lapacke.h:119
#define LAPACKE_free(p)
Definition: lapacke.h:113
#define lapack_complex_double
Definition: lapacke.h:90
#define MAX(x, y)
Definition: lapacke_utils.h:47
#define LAPACKE_malloc(size)
Definition: lapacke.h:110
lapack_logical LAPACKE_lsame(char ca, char cb)
Definition: lapacke_lsame.c:36
#define LAPACK_COL_MAJOR
Definition: lapacke.h:120
void LAPACKE_xerbla(const char *name, lapack_int info)
#define lapack_int
Definition: lapacke.h:47
#define LAPACK_TRANSPOSE_MEMORY_ERROR
Definition: lapacke.h:123
void LAPACKE_zge_trans(int matrix_layout, lapack_int m, lapack_int n, const lapack_complex_double *in, lapack_int ldin, lapack_complex_double *out, lapack_int ldout)
void LAPACK_zggsvp(char *jobu, char *jobv, char *jobq, lapack_int *m, lapack_int *p, lapack_int *n, lapack_complex_double *a, lapack_int *lda, lapack_complex_double *b, lapack_int *ldb, double *tola, double *tolb, lapack_int *k, lapack_int *l, lapack_complex_double *u, lapack_int *ldu, lapack_complex_double *v, lapack_int *ldv, lapack_complex_double *q, lapack_int *ldq, lapack_int *iwork, double *rwork, lapack_complex_double *tau, lapack_complex_double *work, lapack_int *info)
Here is the call graph for this function:
Here is the caller graph for this function: