LAPACK  3.7.1
LAPACK: Linear Algebra PACKage

◆ LAPACKE_zgbsvx_work()

lapack_int LAPACKE_zgbsvx_work ( int  matrix_layout,
char  fact,
char  trans,
lapack_int  n,
lapack_int  kl,
lapack_int  ku,
lapack_int  nrhs,
lapack_complex_double ab,
lapack_int  ldab,
lapack_complex_double afb,
lapack_int  ldafb,
lapack_int ipiv,
char *  equed,
double *  r,
double *  c,
lapack_complex_double b,
lapack_int  ldb,
lapack_complex_double x,
lapack_int  ldx,
double *  rcond,
double *  ferr,
double *  berr,
lapack_complex_double work,
double *  rwork 
)

Definition at line 36 of file lapacke_zgbsvx_work.c.

46 {
47  lapack_int info = 0;
48  if( matrix_layout == LAPACK_COL_MAJOR ) {
49  /* Call LAPACK function and adjust info */
50  LAPACK_zgbsvx( &fact, &trans, &n, &kl, &ku, &nrhs, ab, &ldab, afb,
51  &ldafb, ipiv, equed, r, c, b, &ldb, x, &ldx, rcond, ferr,
52  berr, work, rwork, &info );
53  if( info < 0 ) {
54  info = info - 1;
55  }
56  } else if( matrix_layout == LAPACK_ROW_MAJOR ) {
57  lapack_int ldab_t = MAX(1,kl+ku+1);
58  lapack_int ldafb_t = MAX(1,2*kl+ku+1);
59  lapack_int ldb_t = MAX(1,n);
60  lapack_int ldx_t = MAX(1,n);
61  lapack_complex_double* ab_t = NULL;
62  lapack_complex_double* afb_t = NULL;
63  lapack_complex_double* b_t = NULL;
64  lapack_complex_double* x_t = NULL;
65  /* Check leading dimension(s) */
66  if( ldab < n ) {
67  info = -9;
68  LAPACKE_xerbla( "LAPACKE_zgbsvx_work", info );
69  return info;
70  }
71  if( ldafb < n ) {
72  info = -11;
73  LAPACKE_xerbla( "LAPACKE_zgbsvx_work", info );
74  return info;
75  }
76  if( ldb < nrhs ) {
77  info = -17;
78  LAPACKE_xerbla( "LAPACKE_zgbsvx_work", info );
79  return info;
80  }
81  if( ldx < nrhs ) {
82  info = -19;
83  LAPACKE_xerbla( "LAPACKE_zgbsvx_work", info );
84  return info;
85  }
86  /* Allocate memory for temporary array(s) */
87  ab_t = (lapack_complex_double*)
88  LAPACKE_malloc( sizeof(lapack_complex_double) * ldab_t * MAX(1,n) );
89  if( ab_t == NULL ) {
91  goto exit_level_0;
92  }
93  afb_t = (lapack_complex_double*)
95  ldafb_t * MAX(1,n) );
96  if( afb_t == NULL ) {
98  goto exit_level_1;
99  }
100  b_t = (lapack_complex_double*)
102  ldb_t * MAX(1,nrhs) );
103  if( b_t == NULL ) {
105  goto exit_level_2;
106  }
107  x_t = (lapack_complex_double*)
109  ldx_t * MAX(1,nrhs) );
110  if( x_t == NULL ) {
112  goto exit_level_3;
113  }
114  /* Transpose input matrices */
115  LAPACKE_zgb_trans( matrix_layout, n, n, kl, ku, ab, ldab, ab_t, ldab_t );
116  if( LAPACKE_lsame( fact, 'f' ) ) {
117  LAPACKE_zgb_trans( matrix_layout, n, n, kl, kl+ku, afb, ldafb, afb_t,
118  ldafb_t );
119  }
120  LAPACKE_zge_trans( matrix_layout, n, nrhs, b, ldb, b_t, ldb_t );
121  /* Call LAPACK function and adjust info */
122  LAPACK_zgbsvx( &fact, &trans, &n, &kl, &ku, &nrhs, ab_t, &ldab_t, afb_t,
123  &ldafb_t, ipiv, equed, r, c, b_t, &ldb_t, x_t, &ldx_t,
124  rcond, ferr, berr, work, rwork, &info );
125  if( info < 0 ) {
126  info = info - 1;
127  }
128  /* Transpose output matrices */
129  if( LAPACKE_lsame( fact, 'e' ) && ( LAPACKE_lsame( *equed, 'b' ) ||
130  LAPACKE_lsame( *equed, 'c' ) || LAPACKE_lsame( *equed, 'r' ) ) ) {
131  LAPACKE_zgb_trans( LAPACK_COL_MAJOR, n, n, kl, ku, ab_t, ldab_t, ab,
132  ldab );
133  }
134  if( LAPACKE_lsame( fact, 'e' ) || LAPACKE_lsame( fact, 'n' ) ) {
135  LAPACKE_zgb_trans( LAPACK_COL_MAJOR, n, n, kl, kl+ku, afb_t,
136  ldafb_t, afb, ldafb );
137  }
138  if( LAPACKE_lsame( fact, 'f' ) && ( LAPACKE_lsame( *equed, 'b' ) ||
139  LAPACKE_lsame( *equed, 'c' ) || LAPACKE_lsame( *equed, 'r' ) ) ) {
140  LAPACKE_zge_trans( LAPACK_COL_MAJOR, n, nrhs, b_t, ldb_t, b, ldb );
141  }
142  LAPACKE_zge_trans( LAPACK_COL_MAJOR, n, nrhs, x_t, ldx_t, x, ldx );
143  /* Release memory and exit */
144  LAPACKE_free( x_t );
145 exit_level_3:
146  LAPACKE_free( b_t );
147 exit_level_2:
148  LAPACKE_free( afb_t );
149 exit_level_1:
150  LAPACKE_free( ab_t );
151 exit_level_0:
152  if( info == LAPACK_TRANSPOSE_MEMORY_ERROR ) {
153  LAPACKE_xerbla( "LAPACKE_zgbsvx_work", info );
154  }
155  } else {
156  info = -1;
157  LAPACKE_xerbla( "LAPACKE_zgbsvx_work", info );
158  }
159  return info;
160 }
#define LAPACK_ROW_MAJOR
Definition: lapacke.h:119
#define LAPACKE_free(p)
Definition: lapacke.h:113
#define lapack_complex_double
Definition: lapacke.h:90
void LAPACKE_zgb_trans(int matrix_layout, lapack_int m, lapack_int n, lapack_int kl, lapack_int ku, const lapack_complex_double *in, lapack_int ldin, lapack_complex_double *out, lapack_int ldout)
void LAPACK_zgbsvx(char *fact, char *trans, lapack_int *n, lapack_int *kl, lapack_int *ku, lapack_int *nrhs, lapack_complex_double *ab, lapack_int *ldab, lapack_complex_double *afb, lapack_int *ldafb, lapack_int *ipiv, char *equed, double *r, double *c, lapack_complex_double *b, lapack_int *ldb, lapack_complex_double *x, lapack_int *ldx, double *rcond, double *ferr, double *berr, lapack_complex_double *work, double *rwork, lapack_int *info)
#define MAX(x, y)
Definition: lapacke_utils.h:47
#define LAPACKE_malloc(size)
Definition: lapacke.h:110
lapack_logical LAPACKE_lsame(char ca, char cb)
Definition: lapacke_lsame.c:36
#define LAPACK_COL_MAJOR
Definition: lapacke.h:120
void LAPACKE_xerbla(const char *name, lapack_int info)
#define lapack_int
Definition: lapacke.h:47
#define LAPACK_TRANSPOSE_MEMORY_ERROR
Definition: lapacke.h:123
void LAPACKE_zge_trans(int matrix_layout, lapack_int m, lapack_int n, const lapack_complex_double *in, lapack_int ldin, lapack_complex_double *out, lapack_int ldout)
Here is the call graph for this function:
Here is the caller graph for this function: