LAPACK  3.8.0
LAPACK: Linear Algebra PACKage

◆ serrqrtp()

subroutine serrqrtp ( character*3  PATH,
integer  NUNIT 
)

SERRQRTP

Purpose:
 SERRQRTP tests the error exits for the REAL routines
 that use the QRT decomposition of a triangular-pentagonal matrix.
Parameters
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
December 2016

Definition at line 57 of file serrqrtp.f.

57  IMPLICIT NONE
58 *
59 * -- LAPACK test routine (version 3.7.0) --
60 * -- LAPACK is a software package provided by Univ. of Tennessee, --
61 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
62 * December 2016
63 *
64 * .. Scalar Arguments ..
65  CHARACTER*3 path
66  INTEGER nunit
67 * ..
68 *
69 * =====================================================================
70 *
71 * .. Parameters ..
72  INTEGER nmax
73  parameter( nmax = 2 )
74 * ..
75 * .. Local Scalars ..
76  INTEGER i, info, j
77 * ..
78 * .. Local Arrays ..
79  REAL a( nmax, nmax ), t( nmax, nmax ), w( nmax ),
80  $ b( nmax, nmax ), c( nmax, nmax )
81 * ..
82 * .. External Subroutines ..
83  EXTERNAL alaesm, chkxer, stpqrt2, stpqrt,
84  $ stpmqrt
85 * ..
86 * .. Scalars in Common ..
87  LOGICAL lerr, ok
88  CHARACTER*32 srnamt
89  INTEGER infot, nout
90 * ..
91 * .. Common blocks ..
92  COMMON / infoc / infot, nout, ok, lerr
93  COMMON / srnamc / srnamt
94 * ..
95 * .. Intrinsic Functions ..
96  INTRINSIC float
97 * ..
98 * .. Executable Statements ..
99 *
100  nout = nunit
101  WRITE( nout, fmt = * )
102 *
103 * Set the variables to innocuous values.
104 *
105  DO j = 1, nmax
106  DO i = 1, nmax
107  a( i, j ) = 1.0 / float( i+j )
108  c( i, j ) = 1.0 / float( i+j )
109  t( i, j ) = 1.0 / float( i+j )
110  END DO
111  w( j ) = 0.0
112  END DO
113  ok = .true.
114 *
115 * Error exits for TPQRT factorization
116 *
117 * STPQRT
118 *
119  srnamt = 'STPQRT'
120  infot = 1
121  CALL stpqrt( -1, 1, 0, 1, a, 1, b, 1, t, 1, w, info )
122  CALL chkxer( 'STPQRT', infot, nout, lerr, ok )
123  infot = 2
124  CALL stpqrt( 1, -1, 0, 1, a, 1, b, 1, t, 1, w, info )
125  CALL chkxer( 'STPQRT', infot, nout, lerr, ok )
126  infot = 3
127  CALL stpqrt( 0, 1, -1, 1, a, 1, b, 1, t, 1, w, info )
128  CALL chkxer( 'STPQRT', infot, nout, lerr, ok )
129  infot = 3
130  CALL stpqrt( 0, 1, 1, 1, a, 1, b, 1, t, 1, w, info )
131  CALL chkxer( 'STPQRT', infot, nout, lerr, ok )
132  infot = 4
133  CALL stpqrt( 0, 1, 0, 0, a, 1, b, 1, t, 1, w, info )
134  CALL chkxer( 'STPQRT', infot, nout, lerr, ok )
135  infot = 4
136  CALL stpqrt( 0, 1, 0, 2, a, 1, b, 1, t, 1, w, info )
137  CALL chkxer( 'STPQRT', infot, nout, lerr, ok )
138  infot = 6
139  CALL stpqrt( 1, 2, 0, 2, a, 1, b, 1, t, 1, w, info )
140  CALL chkxer( 'STPQRT', infot, nout, lerr, ok )
141  infot = 8
142  CALL stpqrt( 2, 1, 0, 1, a, 1, b, 1, t, 1, w, info )
143  CALL chkxer( 'STPQRT', infot, nout, lerr, ok )
144  infot = 10
145  CALL stpqrt( 2, 2, 1, 2, a, 2, b, 2, t, 1, w, info )
146  CALL chkxer( 'STPQRT', infot, nout, lerr, ok )
147 *
148 * STPQRT2
149 *
150  srnamt = 'STPQRT2'
151  infot = 1
152  CALL stpqrt2( -1, 0, 0, a, 1, b, 1, t, 1, info )
153  CALL chkxer( 'STPQRT2', infot, nout, lerr, ok )
154  infot = 2
155  CALL stpqrt2( 0, -1, 0, a, 1, b, 1, t, 1, info )
156  CALL chkxer( 'STPQRT2', infot, nout, lerr, ok )
157  infot = 3
158  CALL stpqrt2( 0, 0, -1, a, 1, b, 1, t, 1, info )
159  CALL chkxer( 'STPQRT2', infot, nout, lerr, ok )
160  infot = 5
161  CALL stpqrt2( 2, 2, 0, a, 1, b, 2, t, 2, info )
162  CALL chkxer( 'STPQRT2', infot, nout, lerr, ok )
163  infot = 7
164  CALL stpqrt2( 2, 2, 0, a, 2, b, 1, t, 2, info )
165  CALL chkxer( 'STPQRT2', infot, nout, lerr, ok )
166  infot = 9
167  CALL stpqrt2( 2, 2, 0, a, 2, b, 2, t, 1, info )
168  CALL chkxer( 'STPQRT2', infot, nout, lerr, ok )
169 *
170 * STPMQRT
171 *
172  srnamt = 'STPMQRT'
173  infot = 1
174  CALL stpmqrt( '/', 'N', 0, 0, 0, 0, 1, a, 1, t, 1, b, 1, c, 1,
175  $ w, info )
176  CALL chkxer( 'STPMQRT', infot, nout, lerr, ok )
177  infot = 2
178  CALL stpmqrt( 'L', '/', 0, 0, 0, 0, 1, a, 1, t, 1, b, 1, c, 1,
179  $ w, info )
180  CALL chkxer( 'STPMQRT', infot, nout, lerr, ok )
181  infot = 3
182  CALL stpmqrt( 'L', 'N', -1, 0, 0, 0, 1, a, 1, t, 1, b, 1, c, 1,
183  $ w, info )
184  CALL chkxer( 'STPMQRT', infot, nout, lerr, ok )
185  infot = 4
186  CALL stpmqrt( 'L', 'N', 0, -1, 0, 0, 1, a, 1, t, 1, b, 1, c, 1,
187  $ w, info )
188  CALL chkxer( 'STPMQRT', infot, nout, lerr, ok )
189  infot = 5
190  CALL stpmqrt( 'L', 'N', 0, 0, -1, 0, 1, a, 1, t, 1, b, 1, c, 1,
191  $ w, info )
192  infot = 6
193  CALL stpmqrt( 'L', 'N', 0, 0, 0, -1, 1, a, 1, t, 1, b, 1, c, 1,
194  $ w, info )
195  CALL chkxer( 'STPMQRT', infot, nout, lerr, ok )
196  infot = 7
197  CALL stpmqrt( 'L', 'N', 0, 0, 0, 0, 0, a, 1, t, 1, b, 1, c, 1,
198  $ w, info )
199  CALL chkxer( 'STPMQRT', infot, nout, lerr, ok )
200  infot = 9
201  CALL stpmqrt( 'R', 'N', 1, 2, 1, 1, 1, a, 1, t, 1, b, 1, c, 1,
202  $ w, info )
203  CALL chkxer( 'STPMQRT', infot, nout, lerr, ok )
204  infot = 9
205  CALL stpmqrt( 'L', 'N', 2, 1, 1, 1, 1, a, 1, t, 1, b, 1, c, 1,
206  $ w, info )
207  CALL chkxer( 'STPMQRT', infot, nout, lerr, ok )
208  infot = 11
209  CALL stpmqrt( 'R', 'N', 1, 1, 1, 1, 1, a, 1, t, 0, b, 1, c, 1,
210  $ w, info )
211  CALL chkxer( 'STPMQRT', infot, nout, lerr, ok )
212  infot = 13
213  CALL stpmqrt( 'L', 'N', 1, 1, 1, 1, 1, a, 1, t, 1, b, 0, c, 1,
214  $ w, info )
215  CALL chkxer( 'STPMQRT', infot, nout, lerr, ok )
216  infot = 15
217  CALL stpmqrt( 'L', 'N', 1, 1, 1, 1, 1, a, 1, t, 1, b, 1, c, 0,
218  $ w, info )
219  CALL chkxer( 'STPMQRT', infot, nout, lerr, ok )
220 *
221 * Print a summary line.
222 *
223  CALL alaesm( path, ok, nout )
224 *
225  RETURN
226 *
227 * End of SERRQRT
228 *
subroutine stpqrt(M, N, L, NB, A, LDA, B, LDB, T, LDT, WORK, INFO)
STPQRT
Definition: stpqrt.f:191
subroutine stpqrt2(M, N, L, A, LDA, B, LDB, T, LDT, INFO)
STPQRT2 computes a QR factorization of a real or complex "triangular-pentagonal" matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q.
Definition: stpqrt2.f:175
subroutine alaesm(PATH, OK, NOUT)
ALAESM
Definition: alaesm.f:65
subroutine chkxer(SRNAMT, INFOT, NOUT, LERR, OK)
Definition: cblat2.f:3199
subroutine stpmqrt(SIDE, TRANS, M, N, K, L, NB, V, LDV, T, LDT, A, LDA, B, LDB, WORK, INFO)
STPMQRT
Definition: stpmqrt.f:218
Here is the call graph for this function:
Here is the caller graph for this function: