LAPACK  3.8.0 LAPACK: Linear Algebra PACKage

## ◆ schkpp()

 subroutine schkpp ( logical, dimension( * ) DOTYPE, integer NN, integer, dimension( * ) NVAL, integer NNS, integer, dimension( * ) NSVAL, real THRESH, logical TSTERR, integer NMAX, real, dimension( * ) A, real, dimension( * ) AFAC, real, dimension( * ) AINV, real, dimension( * ) B, real, dimension( * ) X, real, dimension( * ) XACT, real, dimension( * ) WORK, real, dimension( * ) RWORK, integer, dimension( * ) IWORK, integer NOUT )

SCHKPP

Purpose:
` SCHKPP tests SPPTRF, -TRI, -TRS, -RFS, and -CON`
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix dimension N.``` [in] NNS ``` NNS is INTEGER The number of values of NRHS contained in the vector NSVAL.``` [in] NSVAL ``` NSVAL is INTEGER array, dimension (NNS) The values of the number of right hand sides NRHS.``` [in] THRESH ``` THRESH is REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for N, used in dimensioning the work arrays.``` [out] A ``` A is REAL array, dimension (NMAX*(NMAX+1)/2)``` [out] AFAC ``` AFAC is REAL array, dimension (NMAX*(NMAX+1)/2)``` [out] AINV ``` AINV is REAL array, dimension (NMAX*(NMAX+1)/2)``` [out] B ``` B is REAL array, dimension (NMAX*NSMAX) where NSMAX is the largest entry in NSVAL.``` [out] X ` X is REAL array, dimension (NMAX*NSMAX)` [out] XACT ` XACT is REAL array, dimension (NMAX*NSMAX)` [out] WORK ``` WORK is REAL array, dimension (NMAX*max(3,NSMAX))``` [out] RWORK ``` RWORK is REAL array, dimension (max(NMAX,2*NSMAX))``` [out] IWORK ` IWORK is INTEGER array, dimension (NMAX)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```
Date
December 2016

Definition at line 165 of file schkpp.f.

165 *
166 * -- LAPACK test routine (version 3.7.0) --
167 * -- LAPACK is a software package provided by Univ. of Tennessee, --
168 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
169 * December 2016
170 *
171 * .. Scalar Arguments ..
172  LOGICAL tsterr
173  INTEGER nmax, nn, nns, nout
174  REAL thresh
175 * ..
176 * .. Array Arguments ..
177  LOGICAL dotype( * )
178  INTEGER iwork( * ), nsval( * ), nval( * )
179  REAL a( * ), afac( * ), ainv( * ), b( * ),
180  \$ rwork( * ), work( * ), x( * ), xact( * )
181 * ..
182 *
183 * =====================================================================
184 *
185 * .. Parameters ..
186  REAL zero
187  parameter( zero = 0.0e+0 )
188  INTEGER ntypes
189  parameter( ntypes = 9 )
190  INTEGER ntests
191  parameter( ntests = 8 )
192 * ..
193 * .. Local Scalars ..
194  LOGICAL zerot
195  CHARACTER dist, packit, TYPE, uplo, xtype
196  CHARACTER*3 path
197  INTEGER i, imat, in, info, ioff, irhs, iuplo, izero, k,
198  \$ kl, ku, lda, mode, n, nerrs, nfail, nimat, npp,
199  \$ nrhs, nrun
200  REAL anorm, cndnum, rcond, rcondc
201 * ..
202 * .. Local Arrays ..
203  CHARACTER packs( 2 ), uplos( 2 )
204  INTEGER iseed( 4 ), iseedy( 4 )
205  REAL result( ntests )
206 * ..
207 * .. External Functions ..
208  REAL sget06, slansp
209  EXTERNAL sget06, slansp
210 * ..
211 * .. External Subroutines ..
212  EXTERNAL alaerh, alahd, alasum, scopy, serrpo, sget04,
215  \$ spptrs
216 * ..
217 * .. Scalars in Common ..
218  LOGICAL lerr, ok
219  CHARACTER*32 srnamt
220  INTEGER infot, nunit
221 * ..
222 * .. Common blocks ..
223  COMMON / infoc / infot, nunit, ok, lerr
224  COMMON / srnamc / srnamt
225 * ..
226 * .. Intrinsic Functions ..
227  INTRINSIC max
228 * ..
229 * .. Data statements ..
230  DATA iseedy / 1988, 1989, 1990, 1991 /
231  DATA uplos / 'U', 'L' / , packs / 'C', 'R' /
232 * ..
233 * .. Executable Statements ..
234 *
235 * Initialize constants and the random number seed.
236 *
237  path( 1: 1 ) = 'Single precision'
238  path( 2: 3 ) = 'PP'
239  nrun = 0
240  nfail = 0
241  nerrs = 0
242  DO 10 i = 1, 4
243  iseed( i ) = iseedy( i )
244  10 CONTINUE
245 *
246 * Test the error exits
247 *
248  IF( tsterr )
249  \$ CALL serrpo( path, nout )
250  infot = 0
251 *
252 * Do for each value of N in NVAL
253 *
254  DO 110 in = 1, nn
255  n = nval( in )
256  lda = max( n, 1 )
257  xtype = 'N'
258  nimat = ntypes
259  IF( n.LE.0 )
260  \$ nimat = 1
261 *
262  DO 100 imat = 1, nimat
263 *
264 * Do the tests only if DOTYPE( IMAT ) is true.
265 *
266  IF( .NOT.dotype( imat ) )
267  \$ GO TO 100
268 *
269 * Skip types 3, 4, or 5 if the matrix size is too small.
270 *
271  zerot = imat.GE.3 .AND. imat.LE.5
272  IF( zerot .AND. n.LT.imat-2 )
273  \$ GO TO 100
274 *
275 * Do first for UPLO = 'U', then for UPLO = 'L'
276 *
277  DO 90 iuplo = 1, 2
278  uplo = uplos( iuplo )
279  packit = packs( iuplo )
280 *
281 * Set up parameters with SLATB4 and generate a test matrix
282 * with SLATMS.
283 *
284  CALL slatb4( path, imat, n, n, TYPE, kl, ku, anorm, mode,
285  \$ cndnum, dist )
286 *
287  srnamt = 'SLATMS'
288  CALL slatms( n, n, dist, iseed, TYPE, rwork, mode,
289  \$ cndnum, anorm, kl, ku, packit, a, lda, work,
290  \$ info )
291 *
292 * Check error code from SLATMS.
293 *
294  IF( info.NE.0 ) THEN
295  CALL alaerh( path, 'SLATMS', info, 0, uplo, n, n, -1,
296  \$ -1, -1, imat, nfail, nerrs, nout )
297  GO TO 90
298  END IF
299 *
300 * For types 3-5, zero one row and column of the matrix to
301 * test that INFO is returned correctly.
302 *
303  IF( zerot ) THEN
304  IF( imat.EQ.3 ) THEN
305  izero = 1
306  ELSE IF( imat.EQ.4 ) THEN
307  izero = n
308  ELSE
309  izero = n / 2 + 1
310  END IF
311 *
312 * Set row and column IZERO of A to 0.
313 *
314  IF( iuplo.EQ.1 ) THEN
315  ioff = ( izero-1 )*izero / 2
316  DO 20 i = 1, izero - 1
317  a( ioff+i ) = zero
318  20 CONTINUE
319  ioff = ioff + izero
320  DO 30 i = izero, n
321  a( ioff ) = zero
322  ioff = ioff + i
323  30 CONTINUE
324  ELSE
325  ioff = izero
326  DO 40 i = 1, izero - 1
327  a( ioff ) = zero
328  ioff = ioff + n - i
329  40 CONTINUE
330  ioff = ioff - izero
331  DO 50 i = izero, n
332  a( ioff+i ) = zero
333  50 CONTINUE
334  END IF
335  ELSE
336  izero = 0
337  END IF
338 *
339 * Compute the L*L' or U'*U factorization of the matrix.
340 *
341  npp = n*( n+1 ) / 2
342  CALL scopy( npp, a, 1, afac, 1 )
343  srnamt = 'SPPTRF'
344  CALL spptrf( uplo, n, afac, info )
345 *
346 * Check error code from SPPTRF.
347 *
348  IF( info.NE.izero ) THEN
349  CALL alaerh( path, 'SPPTRF', info, izero, uplo, n, n,
350  \$ -1, -1, -1, imat, nfail, nerrs, nout )
351  GO TO 90
352  END IF
353 *
354 * Skip the tests if INFO is not 0.
355 *
356  IF( info.NE.0 )
357  \$ GO TO 90
358 *
359 *+ TEST 1
360 * Reconstruct matrix from factors and compute residual.
361 *
362  CALL scopy( npp, afac, 1, ainv, 1 )
363  CALL sppt01( uplo, n, a, ainv, rwork, result( 1 ) )
364 *
365 *+ TEST 2
366 * Form the inverse and compute the residual.
367 *
368  CALL scopy( npp, afac, 1, ainv, 1 )
369  srnamt = 'SPPTRI'
370  CALL spptri( uplo, n, ainv, info )
371 *
372 * Check error code from SPPTRI.
373 *
374  IF( info.NE.0 )
375  \$ CALL alaerh( path, 'SPPTRI', info, 0, uplo, n, n, -1,
376  \$ -1, -1, imat, nfail, nerrs, nout )
377 *
378  CALL sppt03( uplo, n, a, ainv, work, lda, rwork, rcondc,
379  \$ result( 2 ) )
380 *
381 * Print information about the tests that did not pass
382 * the threshold.
383 *
384  DO 60 k = 1, 2
385  IF( result( k ).GE.thresh ) THEN
386  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
387  \$ CALL alahd( nout, path )
388  WRITE( nout, fmt = 9999 )uplo, n, imat, k,
389  \$ result( k )
390  nfail = nfail + 1
391  END IF
392  60 CONTINUE
393  nrun = nrun + 2
394 *
395  DO 80 irhs = 1, nns
396  nrhs = nsval( irhs )
397 *
398 *+ TEST 3
399 * Solve and compute residual for A * X = B.
400 *
401  srnamt = 'SLARHS'
402  CALL slarhs( path, xtype, uplo, ' ', n, n, kl, ku,
403  \$ nrhs, a, lda, xact, lda, b, lda, iseed,
404  \$ info )
405  CALL slacpy( 'Full', n, nrhs, b, lda, x, lda )
406 *
407  srnamt = 'SPPTRS'
408  CALL spptrs( uplo, n, nrhs, afac, x, lda, info )
409 *
410 * Check error code from SPPTRS.
411 *
412  IF( info.NE.0 )
413  \$ CALL alaerh( path, 'SPPTRS', info, 0, uplo, n, n,
414  \$ -1, -1, nrhs, imat, nfail, nerrs,
415  \$ nout )
416 *
417  CALL slacpy( 'Full', n, nrhs, b, lda, work, lda )
418  CALL sppt02( uplo, n, nrhs, a, x, lda, work, lda,
419  \$ rwork, result( 3 ) )
420 *
421 *+ TEST 4
422 * Check solution from generated exact solution.
423 *
424  CALL sget04( n, nrhs, x, lda, xact, lda, rcondc,
425  \$ result( 4 ) )
426 *
427 *+ TESTS 5, 6, and 7
428 * Use iterative refinement to improve the solution.
429 *
430  srnamt = 'SPPRFS'
431  CALL spprfs( uplo, n, nrhs, a, afac, b, lda, x, lda,
432  \$ rwork, rwork( nrhs+1 ), work, iwork,
433  \$ info )
434 *
435 * Check error code from SPPRFS.
436 *
437  IF( info.NE.0 )
438  \$ CALL alaerh( path, 'SPPRFS', info, 0, uplo, n, n,
439  \$ -1, -1, nrhs, imat, nfail, nerrs,
440  \$ nout )
441 *
442  CALL sget04( n, nrhs, x, lda, xact, lda, rcondc,
443  \$ result( 5 ) )
444  CALL sppt05( uplo, n, nrhs, a, b, lda, x, lda, xact,
445  \$ lda, rwork, rwork( nrhs+1 ),
446  \$ result( 6 ) )
447 *
448 * Print information about the tests that did not pass
449 * the threshold.
450 *
451  DO 70 k = 3, 7
452  IF( result( k ).GE.thresh ) THEN
453  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
454  \$ CALL alahd( nout, path )
455  WRITE( nout, fmt = 9998 )uplo, n, nrhs, imat,
456  \$ k, result( k )
457  nfail = nfail + 1
458  END IF
459  70 CONTINUE
460  nrun = nrun + 5
461  80 CONTINUE
462 *
463 *+ TEST 8
464 * Get an estimate of RCOND = 1/CNDNUM.
465 *
466  anorm = slansp( '1', uplo, n, a, rwork )
467  srnamt = 'SPPCON'
468  CALL sppcon( uplo, n, afac, anorm, rcond, work, iwork,
469  \$ info )
470 *
471 * Check error code from SPPCON.
472 *
473  IF( info.NE.0 )
474  \$ CALL alaerh( path, 'SPPCON', info, 0, uplo, n, n, -1,
475  \$ -1, -1, imat, nfail, nerrs, nout )
476 *
477  result( 8 ) = sget06( rcond, rcondc )
478 *
479 * Print the test ratio if greater than or equal to THRESH.
480 *
481  IF( result( 8 ).GE.thresh ) THEN
482  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
483  \$ CALL alahd( nout, path )
484  WRITE( nout, fmt = 9999 )uplo, n, imat, 8,
485  \$ result( 8 )
486  nfail = nfail + 1
487  END IF
488  nrun = nrun + 1
489  90 CONTINUE
490  100 CONTINUE
491  110 CONTINUE
492 *
493 * Print a summary of the results.
494 *
495  CALL alasum( path, nout, nfail, nrun, nerrs )
496 *
497  9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', type ', i2, ', test ',
498  \$ i2, ', ratio =', g12.5 )
499  9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
500  \$ i2, ', test(', i2, ') =', g12.5 )
501  RETURN
502 *
503 * End of SCHKPP
504 *
subroutine spptrs(UPLO, N, NRHS, AP, B, LDB, INFO)
SPPTRS
Definition: spptrs.f:110
subroutine sppcon(UPLO, N, AP, ANORM, RCOND, WORK, IWORK, INFO)
SPPCON
Definition: sppcon.f:120
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:149
subroutine spptrf(UPLO, N, AP, INFO)
SPPTRF
Definition: spptrf.f:121
real function slansp(NORM, UPLO, N, AP, WORK)
SLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form.
Definition: slansp.f:116
subroutine slatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
SLATB4
Definition: slatb4.f:122
subroutine sppt02(UPLO, N, NRHS, A, X, LDX, B, LDB, RWORK, RESID)
SPPT02
Definition: sppt02.f:124
real function sget06(RCOND, RCONDC)
SGET06
Definition: sget06.f:57
subroutine sppt03(UPLO, N, A, AINV, WORK, LDWORK, RWORK, RCOND, RESID)
SPPT03
Definition: sppt03.f:112
subroutine slatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
SLATMS
Definition: slatms.f:323
subroutine sget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
SGET04
Definition: sget04.f:104
subroutine spptri(UPLO, N, AP, INFO)
SPPTRI
Definition: spptri.f:95
subroutine sppt05(UPLO, N, NRHS, AP, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
SPPT05
Definition: sppt05.f:158
subroutine slacpy(UPLO, M, N, A, LDA, B, LDB)
SLACPY copies all or part of one two-dimensional array to another.
Definition: slacpy.f:105
subroutine slarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
SLARHS
Definition: slarhs.f:206
subroutine serrpo(PATH, NUNIT)
SERRPO
Definition: serrpo.f:57
subroutine scopy(N, SX, INCX, SY, INCY)
SCOPY
Definition: scopy.f:84
subroutine spprfs(UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO)
SPPRFS
Definition: spprfs.f:173
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:75
subroutine sppt01(UPLO, N, A, AFAC, RWORK, RESID)
SPPT01
Definition: sppt01.f:95
Here is the call graph for this function:
Here is the caller graph for this function: