LAPACK  3.8.0
LAPACK: Linear Algebra PACKage

◆ serrqrt()

subroutine serrqrt ( character*3  PATH,
integer  NUNIT 
)

SERRQRT

Purpose:
 SERRQRT tests the error exits for the REAL routines
 that use the QRT decomposition of a general matrix.
Parameters
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
December 2016

Definition at line 57 of file serrqrt.f.

57  IMPLICIT NONE
58 *
59 * -- LAPACK test routine (version 3.7.0) --
60 * -- LAPACK is a software package provided by Univ. of Tennessee, --
61 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
62 * December 2016
63 *
64 * .. Scalar Arguments ..
65  CHARACTER*3 path
66  INTEGER nunit
67 * ..
68 *
69 * =====================================================================
70 *
71 * .. Parameters ..
72  INTEGER nmax
73  parameter( nmax = 2 )
74 * ..
75 * .. Local Scalars ..
76  INTEGER i, info, j
77 * ..
78 * .. Local Arrays ..
79  REAL a( nmax, nmax ), t( nmax, nmax ), w( nmax ),
80  $ c( nmax, nmax )
81 * ..
82 * .. External Subroutines ..
83  EXTERNAL alaesm, chkxer, sgeqrt2, sgeqrt3, sgeqrt,
84  $ sgemqrt
85 * ..
86 * .. Scalars in Common ..
87  LOGICAL lerr, ok
88  CHARACTER*32 srnamt
89  INTEGER infot, nout
90 * ..
91 * .. Common blocks ..
92  COMMON / infoc / infot, nout, ok, lerr
93  COMMON / srnamc / srnamt
94 * ..
95 * .. Intrinsic Functions ..
96  INTRINSIC float
97 * ..
98 * .. Executable Statements ..
99 *
100  nout = nunit
101  WRITE( nout, fmt = * )
102 *
103 * Set the variables to innocuous values.
104 *
105  DO j = 1, nmax
106  DO i = 1, nmax
107  a( i, j ) = 1.0 / float( i+j )
108  c( i, j ) = 1.0 / float( i+j )
109  t( i, j ) = 1.0 / float( i+j )
110  END DO
111  w( j ) = 0.0
112  END DO
113  ok = .true.
114 *
115 * Error exits for QRT factorization
116 *
117 * SGEQRT
118 *
119  srnamt = 'SGEQRT'
120  infot = 1
121  CALL sgeqrt( -1, 0, 1, a, 1, t, 1, w, info )
122  CALL chkxer( 'SGEQRT', infot, nout, lerr, ok )
123  infot = 2
124  CALL sgeqrt( 0, -1, 1, a, 1, t, 1, w, info )
125  CALL chkxer( 'SGEQRT', infot, nout, lerr, ok )
126  infot = 3
127  CALL sgeqrt( 0, 0, 0, a, 1, t, 1, w, info )
128  CALL chkxer( 'SGEQRT', infot, nout, lerr, ok )
129  infot = 5
130  CALL sgeqrt( 2, 1, 1, a, 1, t, 1, w, info )
131  CALL chkxer( 'SGEQRT', infot, nout, lerr, ok )
132  infot = 7
133  CALL sgeqrt( 2, 2, 2, a, 2, t, 1, w, info )
134  CALL chkxer( 'SGEQRT', infot, nout, lerr, ok )
135 *
136 * SGEQRT2
137 *
138  srnamt = 'SGEQRT2'
139  infot = 1
140  CALL sgeqrt2( -1, 0, a, 1, t, 1, info )
141  CALL chkxer( 'SGEQRT2', infot, nout, lerr, ok )
142  infot = 2
143  CALL sgeqrt2( 0, -1, a, 1, t, 1, info )
144  CALL chkxer( 'SGEQRT2', infot, nout, lerr, ok )
145  infot = 4
146  CALL sgeqrt2( 2, 1, a, 1, t, 1, info )
147  CALL chkxer( 'SGEQRT2', infot, nout, lerr, ok )
148  infot = 6
149  CALL sgeqrt2( 2, 2, a, 2, t, 1, info )
150  CALL chkxer( 'SGEQRT2', infot, nout, lerr, ok )
151 *
152 * SGEQRT3
153 *
154  srnamt = 'SGEQRT3'
155  infot = 1
156  CALL sgeqrt3( -1, 0, a, 1, t, 1, info )
157  CALL chkxer( 'SGEQRT3', infot, nout, lerr, ok )
158  infot = 2
159  CALL sgeqrt3( 0, -1, a, 1, t, 1, info )
160  CALL chkxer( 'SGEQRT3', infot, nout, lerr, ok )
161  infot = 4
162  CALL sgeqrt3( 2, 1, a, 1, t, 1, info )
163  CALL chkxer( 'SGEQRT3', infot, nout, lerr, ok )
164  infot = 6
165  CALL sgeqrt3( 2, 2, a, 2, t, 1, info )
166  CALL chkxer( 'SGEQRT3', infot, nout, lerr, ok )
167 *
168 * SGEMQRT
169 *
170  srnamt = 'SGEMQRT'
171  infot = 1
172  CALL sgemqrt( '/', 'N', 0, 0, 0, 1, a, 1, t, 1, c, 1, w, info )
173  CALL chkxer( 'SGEMQRT', infot, nout, lerr, ok )
174  infot = 2
175  CALL sgemqrt( 'L', '/', 0, 0, 0, 1, a, 1, t, 1, c, 1, w, info )
176  CALL chkxer( 'SGEMQRT', infot, nout, lerr, ok )
177  infot = 3
178  CALL sgemqrt( 'L', 'N', -1, 0, 0, 1, a, 1, t, 1, c, 1, w, info )
179  CALL chkxer( 'SGEMQRT', infot, nout, lerr, ok )
180  infot = 4
181  CALL sgemqrt( 'L', 'N', 0, -1, 0, 1, a, 1, t, 1, c, 1, w, info )
182  CALL chkxer( 'SGEMQRT', infot, nout, lerr, ok )
183  infot = 5
184  CALL sgemqrt( 'L', 'N', 0, 0, -1, 1, a, 1, t, 1, c, 1, w, info )
185  CALL chkxer( 'SGEMQRT', infot, nout, lerr, ok )
186  infot = 5
187  CALL sgemqrt( 'R', 'N', 0, 0, -1, 1, a, 1, t, 1, c, 1, w, info )
188  CALL chkxer( 'SGEMQRT', infot, nout, lerr, ok )
189  infot = 6
190  CALL sgemqrt( 'L', 'N', 0, 0, 0, 0, a, 1, t, 1, c, 1, w, info )
191  CALL chkxer( 'SGEMQRT', infot, nout, lerr, ok )
192  infot = 8
193  CALL sgemqrt( 'R', 'N', 1, 2, 1, 1, a, 1, t, 1, c, 1, w, info )
194  CALL chkxer( 'SGEMQRT', infot, nout, lerr, ok )
195  infot = 8
196  CALL sgemqrt( 'L', 'N', 2, 1, 1, 1, a, 1, t, 1, c, 1, w, info )
197  CALL chkxer( 'SGEMQRT', infot, nout, lerr, ok )
198  infot = 10
199  CALL sgemqrt( 'R', 'N', 1, 1, 1, 1, a, 1, t, 0, c, 1, w, info )
200  CALL chkxer( 'SGEMQRT', infot, nout, lerr, ok )
201  infot = 12
202  CALL sgemqrt( 'L', 'N', 1, 1, 1, 1, a, 1, t, 1, c, 0, w, info )
203  CALL chkxer( 'SGEMQRT', infot, nout, lerr, ok )
204 *
205 * Print a summary line.
206 *
207  CALL alaesm( path, ok, nout )
208 *
209  RETURN
210 *
211 * End of SERRQRT
212 *
subroutine sgeqrt2(M, N, A, LDA, T, LDT, INFO)
SGEQRT2 computes a QR factorization of a general real or complex matrix using the compact WY represen...
Definition: sgeqrt2.f:129
subroutine sgeqrt(M, N, NB, A, LDA, T, LDT, WORK, INFO)
SGEQRT
Definition: sgeqrt.f:143
subroutine alaesm(PATH, OK, NOUT)
ALAESM
Definition: alaesm.f:65
subroutine chkxer(SRNAMT, INFOT, NOUT, LERR, OK)
Definition: cblat2.f:3199
recursive subroutine sgeqrt3(M, N, A, LDA, T, LDT, INFO)
SGEQRT3 recursively computes a QR factorization of a general real or complex matrix using the compact...
Definition: sgeqrt3.f:134
subroutine sgemqrt(SIDE, TRANS, M, N, K, NB, V, LDV, T, LDT, C, LDC, WORK, INFO)
SGEMQRT
Definition: sgemqrt.f:170
Here is the call graph for this function:
Here is the caller graph for this function: