LAPACK  3.8.0
LAPACK: Linear Algebra PACKage

◆ slqt02()

subroutine slqt02 ( integer  M,
integer  N,
integer  K,
real, dimension( lda, * )  A,
real, dimension( lda, * )  AF,
real, dimension( lda, * )  Q,
real, dimension( lda, * )  L,
integer  LDA,
real, dimension( * )  TAU,
real, dimension( lwork )  WORK,
integer  LWORK,
real, dimension( * )  RWORK,
real, dimension( * )  RESULT 
)

SLQT02

Purpose:
 SLQT02 tests SORGLQ, which generates an m-by-n matrix Q with
 orthonornmal rows that is defined as the product of k elementary
 reflectors.

 Given the LQ factorization of an m-by-n matrix A, SLQT02 generates
 the orthogonal matrix Q defined by the factorization of the first k
 rows of A; it compares L(1:k,1:m) with A(1:k,1:n)*Q(1:m,1:n)', and
 checks that the rows of Q are orthonormal.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix Q to be generated.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix Q to be generated.
          N >= M >= 0.
[in]K
          K is INTEGER
          The number of elementary reflectors whose product defines the
          matrix Q. M >= K >= 0.
[in]A
          A is REAL array, dimension (LDA,N)
          The m-by-n matrix A which was factorized by SLQT01.
[in]AF
          AF is REAL array, dimension (LDA,N)
          Details of the LQ factorization of A, as returned by SGELQF.
          See SGELQF for further details.
[out]Q
          Q is REAL array, dimension (LDA,N)
[out]L
          L is REAL array, dimension (LDA,M)
[in]LDA
          LDA is INTEGER
          The leading dimension of the arrays A, AF, Q and L. LDA >= N.
[in]TAU
          TAU is REAL array, dimension (M)
          The scalar factors of the elementary reflectors corresponding
          to the LQ factorization in AF.
[out]WORK
          WORK is REAL array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
[out]RWORK
          RWORK is REAL array, dimension (M)
[out]RESULT
          RESULT is REAL array, dimension (2)
          The test ratios:
          RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS )
          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
December 2016

Definition at line 137 of file slqt02.f.

137 *
138 * -- LAPACK test routine (version 3.7.0) --
139 * -- LAPACK is a software package provided by Univ. of Tennessee, --
140 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
141 * December 2016
142 *
143 * .. Scalar Arguments ..
144  INTEGER k, lda, lwork, m, n
145 * ..
146 * .. Array Arguments ..
147  REAL a( lda, * ), af( lda, * ), l( lda, * ),
148  $ q( lda, * ), result( * ), rwork( * ), tau( * ),
149  $ work( lwork )
150 * ..
151 *
152 * =====================================================================
153 *
154 * .. Parameters ..
155  REAL zero, one
156  parameter( zero = 0.0e+0, one = 1.0e+0 )
157  REAL rogue
158  parameter( rogue = -1.0e+10 )
159 * ..
160 * .. Local Scalars ..
161  INTEGER info
162  REAL anorm, eps, resid
163 * ..
164 * .. External Functions ..
165  REAL slamch, slange, slansy
166  EXTERNAL slamch, slange, slansy
167 * ..
168 * .. External Subroutines ..
169  EXTERNAL sgemm, slacpy, slaset, sorglq, ssyrk
170 * ..
171 * .. Intrinsic Functions ..
172  INTRINSIC max, real
173 * ..
174 * .. Scalars in Common ..
175  CHARACTER*32 srnamt
176 * ..
177 * .. Common blocks ..
178  COMMON / srnamc / srnamt
179 * ..
180 * .. Executable Statements ..
181 *
182  eps = slamch( 'Epsilon' )
183 *
184 * Copy the first k rows of the factorization to the array Q
185 *
186  CALL slaset( 'Full', m, n, rogue, rogue, q, lda )
187  CALL slacpy( 'Upper', k, n-1, af( 1, 2 ), lda, q( 1, 2 ), lda )
188 *
189 * Generate the first n columns of the matrix Q
190 *
191  srnamt = 'SORGLQ'
192  CALL sorglq( m, n, k, q, lda, tau, work, lwork, info )
193 *
194 * Copy L(1:k,1:m)
195 *
196  CALL slaset( 'Full', k, m, zero, zero, l, lda )
197  CALL slacpy( 'Lower', k, m, af, lda, l, lda )
198 *
199 * Compute L(1:k,1:m) - A(1:k,1:n) * Q(1:m,1:n)'
200 *
201  CALL sgemm( 'No transpose', 'Transpose', k, m, n, -one, a, lda, q,
202  $ lda, one, l, lda )
203 *
204 * Compute norm( L - A*Q' ) / ( N * norm(A) * EPS ) .
205 *
206  anorm = slange( '1', k, n, a, lda, rwork )
207  resid = slange( '1', k, m, l, lda, rwork )
208  IF( anorm.GT.zero ) THEN
209  result( 1 ) = ( ( resid / REAL( MAX( 1, N ) ) ) / anorm ) / eps
210  ELSE
211  result( 1 ) = zero
212  END IF
213 *
214 * Compute I - Q*Q'
215 *
216  CALL slaset( 'Full', m, m, zero, one, l, lda )
217  CALL ssyrk( 'Upper', 'No transpose', m, n, -one, q, lda, one, l,
218  $ lda )
219 *
220 * Compute norm( I - Q*Q' ) / ( N * EPS ) .
221 *
222  resid = slansy( '1', 'Upper', m, l, lda, rwork )
223 *
224  result( 2 ) = ( resid / REAL( MAX( 1, N ) ) ) / eps
225 *
226  RETURN
227 *
228 * End of SLQT02
229 *
subroutine ssyrk(UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC)
SSYRK
Definition: ssyrk.f:171
subroutine sorglq(M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
SORGLQ
Definition: sorglq.f:129
subroutine sgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
SGEMM
Definition: sgemm.f:189
real function slange(NORM, M, N, A, LDA, WORK)
SLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: slange.f:116
subroutine slaset(UPLO, M, N, ALPHA, BETA, A, LDA)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values...
Definition: slaset.f:112
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:69
subroutine slacpy(UPLO, M, N, A, LDA, B, LDB)
SLACPY copies all or part of one two-dimensional array to another.
Definition: slacpy.f:105
real function slansy(NORM, UPLO, N, A, LDA, WORK)
SLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric matrix.
Definition: slansy.f:124
Here is the call graph for this function:
Here is the caller graph for this function: