LAPACK  3.8.0
LAPACK: Linear Algebra PACKage

◆ serrqr()

subroutine serrqr ( character*3  PATH,
integer  NUNIT 
)

SERRQR

Purpose:
 SERRQR tests the error exits for the REAL routines
 that use the QR decomposition of a general matrix.
Parameters
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
December 2016

Definition at line 57 of file serrqr.f.

57 *
58 * -- LAPACK test routine (version 3.7.0) --
59 * -- LAPACK is a software package provided by Univ. of Tennessee, --
60 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
61 * December 2016
62 *
63 * .. Scalar Arguments ..
64  CHARACTER*3 path
65  INTEGER nunit
66 * ..
67 *
68 * =====================================================================
69 *
70 * .. Parameters ..
71  INTEGER nmax
72  parameter( nmax = 2 )
73 * ..
74 * .. Local Scalars ..
75  INTEGER i, info, j
76 * ..
77 * .. Local Arrays ..
78  REAL a( nmax, nmax ), af( nmax, nmax ), b( nmax ),
79  $ w( nmax ), x( nmax )
80 * ..
81 * .. External Subroutines ..
82  EXTERNAL alaesm, chkxer, sgeqr2, sgeqr2p, sgeqrf,
84  $ sormqr
85 * ..
86 * .. Scalars in Common ..
87  LOGICAL lerr, ok
88  CHARACTER*32 srnamt
89  INTEGER infot, nout
90 * ..
91 * .. Common blocks ..
92  COMMON / infoc / infot, nout, ok, lerr
93  COMMON / srnamc / srnamt
94 * ..
95 * .. Intrinsic Functions ..
96  INTRINSIC real
97 * ..
98 * .. Executable Statements ..
99 *
100  nout = nunit
101  WRITE( nout, fmt = * )
102 *
103 * Set the variables to innocuous values.
104 *
105  DO 20 j = 1, nmax
106  DO 10 i = 1, nmax
107  a( i, j ) = 1. / REAL( i+j )
108  af( i, j ) = 1. / REAL( i+j )
109  10 CONTINUE
110  b( j ) = 0.
111  w( j ) = 0.
112  x( j ) = 0.
113  20 CONTINUE
114  ok = .true.
115 *
116 * Error exits for QR factorization
117 *
118 * SGEQRF
119 *
120  srnamt = 'SGEQRF'
121  infot = 1
122  CALL sgeqrf( -1, 0, a, 1, b, w, 1, info )
123  CALL chkxer( 'SGEQRF', infot, nout, lerr, ok )
124  infot = 2
125  CALL sgeqrf( 0, -1, a, 1, b, w, 1, info )
126  CALL chkxer( 'SGEQRF', infot, nout, lerr, ok )
127  infot = 4
128  CALL sgeqrf( 2, 1, a, 1, b, w, 1, info )
129  CALL chkxer( 'SGEQRF', infot, nout, lerr, ok )
130  infot = 7
131  CALL sgeqrf( 1, 2, a, 1, b, w, 1, info )
132  CALL chkxer( 'SGEQRF', infot, nout, lerr, ok )
133 *
134 * SGEQRFP
135 *
136  srnamt = 'SGEQRFP'
137  infot = 1
138  CALL sgeqrfp( -1, 0, a, 1, b, w, 1, info )
139  CALL chkxer( 'SGEQRFP', infot, nout, lerr, ok )
140  infot = 2
141  CALL sgeqrfp( 0, -1, a, 1, b, w, 1, info )
142  CALL chkxer( 'SGEQRFP', infot, nout, lerr, ok )
143  infot = 4
144  CALL sgeqrfp( 2, 1, a, 1, b, w, 1, info )
145  CALL chkxer( 'SGEQRFP', infot, nout, lerr, ok )
146  infot = 7
147  CALL sgeqrfp( 1, 2, a, 1, b, w, 1, info )
148  CALL chkxer( 'SGEQRFP', infot, nout, lerr, ok )
149 *
150 * SGEQR2
151 *
152  srnamt = 'SGEQR2'
153  infot = 1
154  CALL sgeqr2( -1, 0, a, 1, b, w, info )
155  CALL chkxer( 'SGEQR2', infot, nout, lerr, ok )
156  infot = 2
157  CALL sgeqr2( 0, -1, a, 1, b, w, info )
158  CALL chkxer( 'SGEQR2', infot, nout, lerr, ok )
159  infot = 4
160  CALL sgeqr2( 2, 1, a, 1, b, w, info )
161  CALL chkxer( 'SGEQR2', infot, nout, lerr, ok )
162 *
163 * SGEQR2P
164 *
165  srnamt = 'SGEQR2P'
166  infot = 1
167  CALL sgeqr2p( -1, 0, a, 1, b, w, info )
168  CALL chkxer( 'SGEQR2P', infot, nout, lerr, ok )
169  infot = 2
170  CALL sgeqr2p( 0, -1, a, 1, b, w, info )
171  CALL chkxer( 'SGEQR2P', infot, nout, lerr, ok )
172  infot = 4
173  CALL sgeqr2p( 2, 1, a, 1, b, w, info )
174  CALL chkxer( 'SGEQR2P', infot, nout, lerr, ok )
175 *
176 * SGEQRS
177 *
178  srnamt = 'SGEQRS'
179  infot = 1
180  CALL sgeqrs( -1, 0, 0, a, 1, x, b, 1, w, 1, info )
181  CALL chkxer( 'SGEQRS', infot, nout, lerr, ok )
182  infot = 2
183  CALL sgeqrs( 0, -1, 0, a, 1, x, b, 1, w, 1, info )
184  CALL chkxer( 'SGEQRS', infot, nout, lerr, ok )
185  infot = 2
186  CALL sgeqrs( 1, 2, 0, a, 2, x, b, 2, w, 1, info )
187  CALL chkxer( 'SGEQRS', infot, nout, lerr, ok )
188  infot = 3
189  CALL sgeqrs( 0, 0, -1, a, 1, x, b, 1, w, 1, info )
190  CALL chkxer( 'SGEQRS', infot, nout, lerr, ok )
191  infot = 5
192  CALL sgeqrs( 2, 1, 0, a, 1, x, b, 2, w, 1, info )
193  CALL chkxer( 'SGEQRS', infot, nout, lerr, ok )
194  infot = 8
195  CALL sgeqrs( 2, 1, 0, a, 2, x, b, 1, w, 1, info )
196  CALL chkxer( 'SGEQRS', infot, nout, lerr, ok )
197  infot = 10
198  CALL sgeqrs( 1, 1, 2, a, 1, x, b, 1, w, 1, info )
199  CALL chkxer( 'SGEQRS', infot, nout, lerr, ok )
200 *
201 * SORGQR
202 *
203  srnamt = 'SORGQR'
204  infot = 1
205  CALL sorgqr( -1, 0, 0, a, 1, x, w, 1, info )
206  CALL chkxer( 'SORGQR', infot, nout, lerr, ok )
207  infot = 2
208  CALL sorgqr( 0, -1, 0, a, 1, x, w, 1, info )
209  CALL chkxer( 'SORGQR', infot, nout, lerr, ok )
210  infot = 2
211  CALL sorgqr( 1, 2, 0, a, 1, x, w, 2, info )
212  CALL chkxer( 'SORGQR', infot, nout, lerr, ok )
213  infot = 3
214  CALL sorgqr( 0, 0, -1, a, 1, x, w, 1, info )
215  CALL chkxer( 'SORGQR', infot, nout, lerr, ok )
216  infot = 3
217  CALL sorgqr( 1, 1, 2, a, 1, x, w, 1, info )
218  CALL chkxer( 'SORGQR', infot, nout, lerr, ok )
219  infot = 5
220  CALL sorgqr( 2, 2, 0, a, 1, x, w, 2, info )
221  CALL chkxer( 'SORGQR', infot, nout, lerr, ok )
222  infot = 8
223  CALL sorgqr( 2, 2, 0, a, 2, x, w, 1, info )
224  CALL chkxer( 'SORGQR', infot, nout, lerr, ok )
225 *
226 * SORG2R
227 *
228  srnamt = 'SORG2R'
229  infot = 1
230  CALL sorg2r( -1, 0, 0, a, 1, x, w, info )
231  CALL chkxer( 'SORG2R', infot, nout, lerr, ok )
232  infot = 2
233  CALL sorg2r( 0, -1, 0, a, 1, x, w, info )
234  CALL chkxer( 'SORG2R', infot, nout, lerr, ok )
235  infot = 2
236  CALL sorg2r( 1, 2, 0, a, 1, x, w, info )
237  CALL chkxer( 'SORG2R', infot, nout, lerr, ok )
238  infot = 3
239  CALL sorg2r( 0, 0, -1, a, 1, x, w, info )
240  CALL chkxer( 'SORG2R', infot, nout, lerr, ok )
241  infot = 3
242  CALL sorg2r( 2, 1, 2, a, 2, x, w, info )
243  CALL chkxer( 'SORG2R', infot, nout, lerr, ok )
244  infot = 5
245  CALL sorg2r( 2, 1, 0, a, 1, x, w, info )
246  CALL chkxer( 'SORG2R', infot, nout, lerr, ok )
247 *
248 * SORMQR
249 *
250  srnamt = 'SORMQR'
251  infot = 1
252  CALL sormqr( '/', 'N', 0, 0, 0, a, 1, x, af, 1, w, 1, info )
253  CALL chkxer( 'SORMQR', infot, nout, lerr, ok )
254  infot = 2
255  CALL sormqr( 'L', '/', 0, 0, 0, a, 1, x, af, 1, w, 1, info )
256  CALL chkxer( 'SORMQR', infot, nout, lerr, ok )
257  infot = 3
258  CALL sormqr( 'L', 'N', -1, 0, 0, a, 1, x, af, 1, w, 1, info )
259  CALL chkxer( 'SORMQR', infot, nout, lerr, ok )
260  infot = 4
261  CALL sormqr( 'L', 'N', 0, -1, 0, a, 1, x, af, 1, w, 1, info )
262  CALL chkxer( 'SORMQR', infot, nout, lerr, ok )
263  infot = 5
264  CALL sormqr( 'L', 'N', 0, 0, -1, a, 1, x, af, 1, w, 1, info )
265  CALL chkxer( 'SORMQR', infot, nout, lerr, ok )
266  infot = 5
267  CALL sormqr( 'L', 'N', 0, 1, 1, a, 1, x, af, 1, w, 1, info )
268  CALL chkxer( 'SORMQR', infot, nout, lerr, ok )
269  infot = 5
270  CALL sormqr( 'R', 'N', 1, 0, 1, a, 1, x, af, 1, w, 1, info )
271  CALL chkxer( 'SORMQR', infot, nout, lerr, ok )
272  infot = 7
273  CALL sormqr( 'L', 'N', 2, 1, 0, a, 1, x, af, 2, w, 1, info )
274  CALL chkxer( 'SORMQR', infot, nout, lerr, ok )
275  infot = 7
276  CALL sormqr( 'R', 'N', 1, 2, 0, a, 1, x, af, 1, w, 1, info )
277  CALL chkxer( 'SORMQR', infot, nout, lerr, ok )
278  infot = 10
279  CALL sormqr( 'L', 'N', 2, 1, 0, a, 2, x, af, 1, w, 1, info )
280  CALL chkxer( 'SORMQR', infot, nout, lerr, ok )
281  infot = 12
282  CALL sormqr( 'L', 'N', 1, 2, 0, a, 1, x, af, 1, w, 1, info )
283  CALL chkxer( 'SORMQR', infot, nout, lerr, ok )
284  infot = 12
285  CALL sormqr( 'R', 'N', 2, 1, 0, a, 1, x, af, 2, w, 1, info )
286  CALL chkxer( 'SORMQR', infot, nout, lerr, ok )
287 *
288 * SORM2R
289 *
290  srnamt = 'SORM2R'
291  infot = 1
292  CALL sorm2r( '/', 'N', 0, 0, 0, a, 1, x, af, 1, w, info )
293  CALL chkxer( 'SORM2R', infot, nout, lerr, ok )
294  infot = 2
295  CALL sorm2r( 'L', '/', 0, 0, 0, a, 1, x, af, 1, w, info )
296  CALL chkxer( 'SORM2R', infot, nout, lerr, ok )
297  infot = 3
298  CALL sorm2r( 'L', 'N', -1, 0, 0, a, 1, x, af, 1, w, info )
299  CALL chkxer( 'SORM2R', infot, nout, lerr, ok )
300  infot = 4
301  CALL sorm2r( 'L', 'N', 0, -1, 0, a, 1, x, af, 1, w, info )
302  CALL chkxer( 'SORM2R', infot, nout, lerr, ok )
303  infot = 5
304  CALL sorm2r( 'L', 'N', 0, 0, -1, a, 1, x, af, 1, w, info )
305  CALL chkxer( 'SORM2R', infot, nout, lerr, ok )
306  infot = 5
307  CALL sorm2r( 'L', 'N', 0, 1, 1, a, 1, x, af, 1, w, info )
308  CALL chkxer( 'SORM2R', infot, nout, lerr, ok )
309  infot = 5
310  CALL sorm2r( 'R', 'N', 1, 0, 1, a, 1, x, af, 1, w, info )
311  CALL chkxer( 'SORM2R', infot, nout, lerr, ok )
312  infot = 7
313  CALL sorm2r( 'L', 'N', 2, 1, 0, a, 1, x, af, 2, w, info )
314  CALL chkxer( 'SORM2R', infot, nout, lerr, ok )
315  infot = 7
316  CALL sorm2r( 'R', 'N', 1, 2, 0, a, 1, x, af, 1, w, info )
317  CALL chkxer( 'SORM2R', infot, nout, lerr, ok )
318  infot = 10
319  CALL sorm2r( 'L', 'N', 2, 1, 0, a, 2, x, af, 1, w, info )
320  CALL chkxer( 'SORM2R', infot, nout, lerr, ok )
321 *
322 * Print a summary line.
323 *
324  CALL alaesm( path, ok, nout )
325 *
326  RETURN
327 *
328 * End of SERRQR
329 *
subroutine sgeqrfp(M, N, A, LDA, TAU, WORK, LWORK, INFO)
SGEQRFP
Definition: sgeqrfp.f:141
subroutine alaesm(PATH, OK, NOUT)
ALAESM
Definition: alaesm.f:65
subroutine sgeqr2p(M, N, A, LDA, TAU, WORK, INFO)
SGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elem...
Definition: sgeqr2p.f:126
subroutine sormqr(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
SORMQR
Definition: sormqr.f:170
subroutine sgeqrf(M, N, A, LDA, TAU, WORK, LWORK, INFO)
SGEQRF
Definition: sgeqrf.f:138
subroutine sorg2r(M, N, K, A, LDA, TAU, WORK, INFO)
SORG2R generates all or part of the orthogonal matrix Q from a QR factorization determined by sgeqrf ...
Definition: sorg2r.f:116
subroutine chkxer(SRNAMT, INFOT, NOUT, LERR, OK)
Definition: cblat2.f:3199
subroutine sgeqr2(M, N, A, LDA, TAU, WORK, INFO)
SGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm...
Definition: sgeqr2.f:123
subroutine sorgqr(M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
SORGQR
Definition: sorgqr.f:130
subroutine sgeqrs(M, N, NRHS, A, LDA, TAU, B, LDB, WORK, LWORK, INFO)
SGEQRS
Definition: sgeqrs.f:123
subroutine sorm2r(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO)
SORM2R multiplies a general matrix by the orthogonal matrix from a QR factorization determined by sge...
Definition: sorm2r.f:161
Here is the call graph for this function:
Here is the caller graph for this function: