LAPACK  3.8.0 LAPACK: Linear Algebra PACKage

## ◆ sdrvsp()

 subroutine sdrvsp ( logical, dimension( * ) DOTYPE, integer NN, integer, dimension( * ) NVAL, integer NRHS, real THRESH, logical TSTERR, integer NMAX, real, dimension( * ) A, real, dimension( * ) AFAC, real, dimension( * ) AINV, real, dimension( * ) B, real, dimension( * ) X, real, dimension( * ) XACT, real, dimension( * ) WORK, real, dimension( * ) RWORK, integer, dimension( * ) IWORK, integer NOUT )

SDRVSP

Purpose:
` SDRVSP tests the driver routines SSPSV and -SVX.`
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix dimension N.``` [in] NRHS ``` NRHS is INTEGER The number of right hand side vectors to be generated for each linear system.``` [in] THRESH ``` THRESH is REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for N, used in dimensioning the work arrays.``` [out] A ``` A is REAL array, dimension (NMAX*(NMAX+1)/2)``` [out] AFAC ``` AFAC is REAL array, dimension (NMAX*(NMAX+1)/2)``` [out] AINV ``` AINV is REAL array, dimension (NMAX*(NMAX+1)/2)``` [out] B ` B is REAL array, dimension (NMAX*NRHS)` [out] X ` X is REAL array, dimension (NMAX*NRHS)` [out] XACT ` XACT is REAL array, dimension (NMAX*NRHS)` [out] WORK ``` WORK is REAL array, dimension (NMAX*max(2,NRHS))``` [out] RWORK ` RWORK is REAL array, dimension (NMAX+2*NRHS)` [out] IWORK ` IWORK is INTEGER array, dimension (2*NMAX)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```
Date
December 2016

Definition at line 158 of file sdrvsp.f.

158 *
159 * -- LAPACK test routine (version 3.7.0) --
160 * -- LAPACK is a software package provided by Univ. of Tennessee, --
161 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
162 * December 2016
163 *
164 * .. Scalar Arguments ..
165  LOGICAL tsterr
166  INTEGER nmax, nn, nout, nrhs
167  REAL thresh
168 * ..
169 * .. Array Arguments ..
170  LOGICAL dotype( * )
171  INTEGER iwork( * ), nval( * )
172  REAL a( * ), afac( * ), ainv( * ), b( * ),
173  \$ rwork( * ), work( * ), x( * ), xact( * )
174 * ..
175 *
176 * =====================================================================
177 *
178 * .. Parameters ..
179  REAL one, zero
180  parameter( one = 1.0e+0, zero = 0.0e+0 )
181  INTEGER ntypes, ntests
182  parameter( ntypes = 10, ntests = 6 )
183  INTEGER nfact
184  parameter( nfact = 2 )
185 * ..
186 * .. Local Scalars ..
187  LOGICAL zerot
188  CHARACTER dist, fact, packit, TYPE, uplo, xtype
189  CHARACTER*3 path
190  INTEGER i, i1, i2, ifact, imat, in, info, ioff, iuplo,
191  \$ izero, j, k, k1, kl, ku, lda, lwork, mode, n,
192  \$ nerrs, nfail, nimat, npp, nrun, nt
193  REAL ainvnm, anorm, cndnum, rcond, rcondc
194 * ..
195 * .. Local Arrays ..
196  CHARACTER facts( nfact )
197  INTEGER iseed( 4 ), iseedy( 4 )
198  REAL result( ntests )
199 * ..
200 * .. External Functions ..
201  REAL sget06, slansp
202  EXTERNAL sget06, slansp
203 * ..
204 * .. External Subroutines ..
205  EXTERNAL aladhd, alaerh, alasvm, scopy, serrvx, sget04,
208 * ..
209 * .. Scalars in Common ..
210  LOGICAL lerr, ok
211  CHARACTER*32 srnamt
212  INTEGER infot, nunit
213 * ..
214 * .. Common blocks ..
215  COMMON / infoc / infot, nunit, ok, lerr
216  COMMON / srnamc / srnamt
217 * ..
218 * .. Intrinsic Functions ..
219  INTRINSIC max, min
220 * ..
221 * .. Data statements ..
222  DATA iseedy / 1988, 1989, 1990, 1991 /
223  DATA facts / 'F', 'N' /
224 * ..
225 * .. Executable Statements ..
226 *
227 * Initialize constants and the random number seed.
228 *
229  path( 1: 1 ) = 'Single precision'
230  path( 2: 3 ) = 'SP'
231  nrun = 0
232  nfail = 0
233  nerrs = 0
234  DO 10 i = 1, 4
235  iseed( i ) = iseedy( i )
236  10 CONTINUE
237  lwork = max( 2*nmax, nmax*nrhs )
238 *
239 * Test the error exits
240 *
241  IF( tsterr )
242  \$ CALL serrvx( path, nout )
243  infot = 0
244 *
245 * Do for each value of N in NVAL
246 *
247  DO 180 in = 1, nn
248  n = nval( in )
249  lda = max( n, 1 )
250  npp = n*( n+1 ) / 2
251  xtype = 'N'
252  nimat = ntypes
253  IF( n.LE.0 )
254  \$ nimat = 1
255 *
256  DO 170 imat = 1, nimat
257 *
258 * Do the tests only if DOTYPE( IMAT ) is true.
259 *
260  IF( .NOT.dotype( imat ) )
261  \$ GO TO 170
262 *
263 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
264 *
265  zerot = imat.GE.3 .AND. imat.LE.6
266  IF( zerot .AND. n.LT.imat-2 )
267  \$ GO TO 170
268 *
269 * Do first for UPLO = 'U', then for UPLO = 'L'
270 *
271  DO 160 iuplo = 1, 2
272  IF( iuplo.EQ.1 ) THEN
273  uplo = 'U'
274  packit = 'C'
275  ELSE
276  uplo = 'L'
277  packit = 'R'
278  END IF
279 *
280 * Set up parameters with SLATB4 and generate a test matrix
281 * with SLATMS.
282 *
283  CALL slatb4( path, imat, n, n, TYPE, kl, ku, anorm, mode,
284  \$ cndnum, dist )
285 *
286  srnamt = 'SLATMS'
287  CALL slatms( n, n, dist, iseed, TYPE, rwork, mode,
288  \$ cndnum, anorm, kl, ku, packit, a, lda, work,
289  \$ info )
290 *
291 * Check error code from SLATMS.
292 *
293  IF( info.NE.0 ) THEN
294  CALL alaerh( path, 'SLATMS', info, 0, uplo, n, n, -1,
295  \$ -1, -1, imat, nfail, nerrs, nout )
296  GO TO 160
297  END IF
298 *
299 * For types 3-6, zero one or more rows and columns of the
300 * matrix to test that INFO is returned correctly.
301 *
302  IF( zerot ) THEN
303  IF( imat.EQ.3 ) THEN
304  izero = 1
305  ELSE IF( imat.EQ.4 ) THEN
306  izero = n
307  ELSE
308  izero = n / 2 + 1
309  END IF
310 *
311  IF( imat.LT.6 ) THEN
312 *
313 * Set row and column IZERO to zero.
314 *
315  IF( iuplo.EQ.1 ) THEN
316  ioff = ( izero-1 )*izero / 2
317  DO 20 i = 1, izero - 1
318  a( ioff+i ) = zero
319  20 CONTINUE
320  ioff = ioff + izero
321  DO 30 i = izero, n
322  a( ioff ) = zero
323  ioff = ioff + i
324  30 CONTINUE
325  ELSE
326  ioff = izero
327  DO 40 i = 1, izero - 1
328  a( ioff ) = zero
329  ioff = ioff + n - i
330  40 CONTINUE
331  ioff = ioff - izero
332  DO 50 i = izero, n
333  a( ioff+i ) = zero
334  50 CONTINUE
335  END IF
336  ELSE
337  ioff = 0
338  IF( iuplo.EQ.1 ) THEN
339 *
340 * Set the first IZERO rows and columns to zero.
341 *
342  DO 70 j = 1, n
343  i2 = min( j, izero )
344  DO 60 i = 1, i2
345  a( ioff+i ) = zero
346  60 CONTINUE
347  ioff = ioff + j
348  70 CONTINUE
349  ELSE
350 *
351 * Set the last IZERO rows and columns to zero.
352 *
353  DO 90 j = 1, n
354  i1 = max( j, izero )
355  DO 80 i = i1, n
356  a( ioff+i ) = zero
357  80 CONTINUE
358  ioff = ioff + n - j
359  90 CONTINUE
360  END IF
361  END IF
362  ELSE
363  izero = 0
364  END IF
365 *
366  DO 150 ifact = 1, nfact
367 *
368 * Do first for FACT = 'F', then for other values.
369 *
370  fact = facts( ifact )
371 *
372 * Compute the condition number for comparison with
373 * the value returned by SSPSVX.
374 *
375  IF( zerot ) THEN
376  IF( ifact.EQ.1 )
377  \$ GO TO 150
378  rcondc = zero
379 *
380  ELSE IF( ifact.EQ.1 ) THEN
381 *
382 * Compute the 1-norm of A.
383 *
384  anorm = slansp( '1', uplo, n, a, rwork )
385 *
386 * Factor the matrix A.
387 *
388  CALL scopy( npp, a, 1, afac, 1 )
389  CALL ssptrf( uplo, n, afac, iwork, info )
390 *
391 * Compute inv(A) and take its norm.
392 *
393  CALL scopy( npp, afac, 1, ainv, 1 )
394  CALL ssptri( uplo, n, ainv, iwork, work, info )
395  ainvnm = slansp( '1', uplo, n, ainv, rwork )
396 *
397 * Compute the 1-norm condition number of A.
398 *
399  IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
400  rcondc = one
401  ELSE
402  rcondc = ( one / anorm ) / ainvnm
403  END IF
404  END IF
405 *
406 * Form an exact solution and set the right hand side.
407 *
408  srnamt = 'SLARHS'
409  CALL slarhs( path, xtype, uplo, ' ', n, n, kl, ku,
410  \$ nrhs, a, lda, xact, lda, b, lda, iseed,
411  \$ info )
412  xtype = 'C'
413 *
414 * --- Test SSPSV ---
415 *
416  IF( ifact.EQ.2 ) THEN
417  CALL scopy( npp, a, 1, afac, 1 )
418  CALL slacpy( 'Full', n, nrhs, b, lda, x, lda )
419 *
420 * Factor the matrix and solve the system using SSPSV.
421 *
422  srnamt = 'SSPSV '
423  CALL sspsv( uplo, n, nrhs, afac, iwork, x, lda,
424  \$ info )
425 *
426 * Adjust the expected value of INFO to account for
427 * pivoting.
428 *
429  k = izero
430  IF( k.GT.0 ) THEN
431  100 CONTINUE
432  IF( iwork( k ).LT.0 ) THEN
433  IF( iwork( k ).NE.-k ) THEN
434  k = -iwork( k )
435  GO TO 100
436  END IF
437  ELSE IF( iwork( k ).NE.k ) THEN
438  k = iwork( k )
439  GO TO 100
440  END IF
441  END IF
442 *
443 * Check error code from SSPSV .
444 *
445  IF( info.NE.k ) THEN
446  CALL alaerh( path, 'SSPSV ', info, k, uplo, n,
447  \$ n, -1, -1, nrhs, imat, nfail,
448  \$ nerrs, nout )
449  GO TO 120
450  ELSE IF( info.NE.0 ) THEN
451  GO TO 120
452  END IF
453 *
454 * Reconstruct matrix from factors and compute
455 * residual.
456 *
457  CALL sspt01( uplo, n, a, afac, iwork, ainv, lda,
458  \$ rwork, result( 1 ) )
459 *
460 * Compute residual of the computed solution.
461 *
462  CALL slacpy( 'Full', n, nrhs, b, lda, work, lda )
463  CALL sppt02( uplo, n, nrhs, a, x, lda, work, lda,
464  \$ rwork, result( 2 ) )
465 *
466 * Check solution from generated exact solution.
467 *
468  CALL sget04( n, nrhs, x, lda, xact, lda, rcondc,
469  \$ result( 3 ) )
470  nt = 3
471 *
472 * Print information about the tests that did not pass
473 * the threshold.
474 *
475  DO 110 k = 1, nt
476  IF( result( k ).GE.thresh ) THEN
477  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
478  \$ CALL aladhd( nout, path )
479  WRITE( nout, fmt = 9999 )'SSPSV ', uplo, n,
480  \$ imat, k, result( k )
481  nfail = nfail + 1
482  END IF
483  110 CONTINUE
484  nrun = nrun + nt
485  120 CONTINUE
486  END IF
487 *
488 * --- Test SSPSVX ---
489 *
490  IF( ifact.EQ.2 .AND. npp.GT.0 )
491  \$ CALL slaset( 'Full', npp, 1, zero, zero, afac,
492  \$ npp )
493  CALL slaset( 'Full', n, nrhs, zero, zero, x, lda )
494 *
495 * Solve the system and compute the condition number and
496 * error bounds using SSPSVX.
497 *
498  srnamt = 'SSPSVX'
499  CALL sspsvx( fact, uplo, n, nrhs, a, afac, iwork, b,
500  \$ lda, x, lda, rcond, rwork,
501  \$ rwork( nrhs+1 ), work, iwork( n+1 ),
502  \$ info )
503 *
504 * Adjust the expected value of INFO to account for
505 * pivoting.
506 *
507  k = izero
508  IF( k.GT.0 ) THEN
509  130 CONTINUE
510  IF( iwork( k ).LT.0 ) THEN
511  IF( iwork( k ).NE.-k ) THEN
512  k = -iwork( k )
513  GO TO 130
514  END IF
515  ELSE IF( iwork( k ).NE.k ) THEN
516  k = iwork( k )
517  GO TO 130
518  END IF
519  END IF
520 *
521 * Check the error code from SSPSVX.
522 *
523  IF( info.NE.k ) THEN
524  CALL alaerh( path, 'SSPSVX', info, k, fact // uplo,
525  \$ n, n, -1, -1, nrhs, imat, nfail,
526  \$ nerrs, nout )
527  GO TO 150
528  END IF
529 *
530  IF( info.EQ.0 ) THEN
531  IF( ifact.GE.2 ) THEN
532 *
533 * Reconstruct matrix from factors and compute
534 * residual.
535 *
536  CALL sspt01( uplo, n, a, afac, iwork, ainv, lda,
537  \$ rwork( 2*nrhs+1 ), result( 1 ) )
538  k1 = 1
539  ELSE
540  k1 = 2
541  END IF
542 *
543 * Compute residual of the computed solution.
544 *
545  CALL slacpy( 'Full', n, nrhs, b, lda, work, lda )
546  CALL sppt02( uplo, n, nrhs, a, x, lda, work, lda,
547  \$ rwork( 2*nrhs+1 ), result( 2 ) )
548 *
549 * Check solution from generated exact solution.
550 *
551  CALL sget04( n, nrhs, x, lda, xact, lda, rcondc,
552  \$ result( 3 ) )
553 *
554 * Check the error bounds from iterative refinement.
555 *
556  CALL sppt05( uplo, n, nrhs, a, b, lda, x, lda,
557  \$ xact, lda, rwork, rwork( nrhs+1 ),
558  \$ result( 4 ) )
559  ELSE
560  k1 = 6
561  END IF
562 *
563 * Compare RCOND from SSPSVX with the computed value
564 * in RCONDC.
565 *
566  result( 6 ) = sget06( rcond, rcondc )
567 *
568 * Print information about the tests that did not pass
569 * the threshold.
570 *
571  DO 140 k = k1, 6
572  IF( result( k ).GE.thresh ) THEN
573  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
574  \$ CALL aladhd( nout, path )
575  WRITE( nout, fmt = 9998 )'SSPSVX', fact, uplo,
576  \$ n, imat, k, result( k )
577  nfail = nfail + 1
578  END IF
579  140 CONTINUE
580  nrun = nrun + 7 - k1
581 *
582  150 CONTINUE
583 *
584  160 CONTINUE
585  170 CONTINUE
586  180 CONTINUE
587 *
588 * Print a summary of the results.
589 *
590  CALL alasvm( path, nout, nfail, nrun, nerrs )
591 *
592  9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i2,
593  \$ ', test ', i2, ', ratio =', g12.5 )
594  9998 FORMAT( 1x, a, ', FACT=''', a1, ''', UPLO=''', a1, ''', N =', i5,
595  \$ ', type ', i2, ', test ', i2, ', ratio =', g12.5 )
596  RETURN
597 *
598 * End of SDRVSP
599 *
subroutine sspsv(UPLO, N, NRHS, AP, IPIV, B, LDB, INFO)
SSPSV computes the solution to system of linear equations A * X = B for OTHER matrices ...
Definition: sspsv.f:164
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:75
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:149
real function slansp(NORM, UPLO, N, AP, WORK)
SLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form.
Definition: slansp.f:116
subroutine slatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
SLATB4
Definition: slatb4.f:122
subroutine sppt02(UPLO, N, NRHS, A, X, LDX, B, LDB, RWORK, RESID)
SPPT02
Definition: sppt02.f:124
subroutine sspsvx(FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, IWORK, INFO)
SSPSVX computes the solution to system of linear equations A * X = B for OTHER matrices ...
Definition: sspsvx.f:278
real function sget06(RCOND, RCONDC)
SGET06
Definition: sget06.f:57
subroutine slatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
SLATMS
Definition: slatms.f:323
subroutine sget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
SGET04
Definition: sget04.f:104
subroutine ssptrf(UPLO, N, AP, IPIV, INFO)
SSPTRF
Definition: ssptrf.f:159
subroutine slaset(UPLO, M, N, ALPHA, BETA, A, LDA)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values...
Definition: slaset.f:112
subroutine serrvx(PATH, NUNIT)
SERRVX
Definition: serrvx.f:57
subroutine sspt01(UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID)
SSPT01
Definition: sspt01.f:112
subroutine sppt05(UPLO, N, NRHS, AP, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
SPPT05
Definition: sppt05.f:158
subroutine slacpy(UPLO, M, N, A, LDA, B, LDB)
SLACPY copies all or part of one two-dimensional array to another.
Definition: slacpy.f:105
subroutine ssptri(UPLO, N, AP, IPIV, WORK, INFO)
SSPTRI
Definition: ssptri.f:111
subroutine slarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
SLARHS
Definition: slarhs.f:206
subroutine scopy(N, SX, INCX, SY, INCY)
SCOPY
Definition: scopy.f:84
Here is the call graph for this function:
Here is the caller graph for this function: