LAPACK  3.10.1 LAPACK: Linear Algebra PACKage
cgetc2.f
Go to the documentation of this file.
1 *> \brief \b CGETC2 computes the LU factorization with complete pivoting of the general n-by-n matrix.
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgetc2.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgetc2.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgetc2.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE CGETC2( N, A, LDA, IPIV, JPIV, INFO )
22 *
23 * .. Scalar Arguments ..
24 * INTEGER INFO, LDA, N
25 * ..
26 * .. Array Arguments ..
27 * INTEGER IPIV( * ), JPIV( * )
28 * COMPLEX A( LDA, * )
29 * ..
30 *
31 *
32 *> \par Purpose:
33 * =============
34 *>
35 *> \verbatim
36 *>
37 *> CGETC2 computes an LU factorization, using complete pivoting, of the
38 *> n-by-n matrix A. The factorization has the form A = P * L * U * Q,
39 *> where P and Q are permutation matrices, L is lower triangular with
40 *> unit diagonal elements and U is upper triangular.
41 *>
42 *> This is a level 1 BLAS version of the algorithm.
43 *> \endverbatim
44 *
45 * Arguments:
46 * ==========
47 *
48 *> \param[in] N
49 *> \verbatim
50 *> N is INTEGER
51 *> The order of the matrix A. N >= 0.
52 *> \endverbatim
53 *>
54 *> \param[in,out] A
55 *> \verbatim
56 *> A is COMPLEX array, dimension (LDA, N)
57 *> On entry, the n-by-n matrix to be factored.
58 *> On exit, the factors L and U from the factorization
59 *> A = P*L*U*Q; the unit diagonal elements of L are not stored.
60 *> If U(k, k) appears to be less than SMIN, U(k, k) is given the
61 *> value of SMIN, giving a nonsingular perturbed system.
62 *> \endverbatim
63 *>
64 *> \param[in] LDA
65 *> \verbatim
66 *> LDA is INTEGER
67 *> The leading dimension of the array A. LDA >= max(1, N).
68 *> \endverbatim
69 *>
70 *> \param[out] IPIV
71 *> \verbatim
72 *> IPIV is INTEGER array, dimension (N).
73 *> The pivot indices; for 1 <= i <= N, row i of the
74 *> matrix has been interchanged with row IPIV(i).
75 *> \endverbatim
76 *>
77 *> \param[out] JPIV
78 *> \verbatim
79 *> JPIV is INTEGER array, dimension (N).
80 *> The pivot indices; for 1 <= j <= N, column j of the
81 *> matrix has been interchanged with column JPIV(j).
82 *> \endverbatim
83 *>
84 *> \param[out] INFO
85 *> \verbatim
86 *> INFO is INTEGER
87 *> = 0: successful exit
88 *> > 0: if INFO = k, U(k, k) is likely to produce overflow if
89 *> one tries to solve for x in Ax = b. So U is perturbed
90 *> to avoid the overflow.
91 *> \endverbatim
92 *
93 * Authors:
94 * ========
95 *
96 *> \author Univ. of Tennessee
97 *> \author Univ. of California Berkeley
98 *> \author Univ. of Colorado Denver
99 *> \author NAG Ltd.
100 *
101 *> \ingroup complexGEauxiliary
102 *
103 *> \par Contributors:
104 * ==================
105 *>
106 *> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
107 *> Umea University, S-901 87 Umea, Sweden.
108 *
109 * =====================================================================
110  SUBROUTINE cgetc2( N, A, LDA, IPIV, JPIV, INFO )
111 *
112 * -- LAPACK auxiliary routine --
113 * -- LAPACK is a software package provided by Univ. of Tennessee, --
114 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
115 *
116 * .. Scalar Arguments ..
117  INTEGER INFO, LDA, N
118 * ..
119 * .. Array Arguments ..
120  INTEGER IPIV( * ), JPIV( * )
121  COMPLEX A( LDA, * )
122 * ..
123 *
124 * =====================================================================
125 *
126 * .. Parameters ..
127  REAL ZERO, ONE
128  parameter( zero = 0.0e+0, one = 1.0e+0 )
129 * ..
130 * .. Local Scalars ..
131  INTEGER I, IP, IPV, J, JP, JPV
132  REAL BIGNUM, EPS, SMIN, SMLNUM, XMAX
133 * ..
134 * .. External Subroutines ..
136 * ..
137 * .. External Functions ..
138  REAL SLAMCH
139  EXTERNAL slamch
140 * ..
141 * .. Intrinsic Functions ..
142  INTRINSIC abs, cmplx, max
143 * ..
144 * .. Executable Statements ..
145 *
146  info = 0
147 *
148 * Quick return if possible
149 *
150  IF( n.EQ.0 )
151  \$ RETURN
152 *
153 * Set constants to control overflow
154 *
155  eps = slamch( 'P' )
156  smlnum = slamch( 'S' ) / eps
157  bignum = one / smlnum
158  CALL slabad( smlnum, bignum )
159 *
160 * Handle the case N=1 by itself
161 *
162  IF( n.EQ.1 ) THEN
163  ipiv( 1 ) = 1
164  jpiv( 1 ) = 1
165  IF( abs( a( 1, 1 ) ).LT.smlnum ) THEN
166  info = 1
167  a( 1, 1 ) = cmplx( smlnum, zero )
168  END IF
169  RETURN
170  END IF
171 *
172 * Factorize A using complete pivoting.
173 * Set pivots less than SMIN to SMIN
174 *
175  DO 40 i = 1, n - 1
176 *
177 * Find max element in matrix A
178 *
179  xmax = zero
180  DO 20 ip = i, n
181  DO 10 jp = i, n
182  IF( abs( a( ip, jp ) ).GE.xmax ) THEN
183  xmax = abs( a( ip, jp ) )
184  ipv = ip
185  jpv = jp
186  END IF
187  10 CONTINUE
188  20 CONTINUE
189  IF( i.EQ.1 )
190  \$ smin = max( eps*xmax, smlnum )
191 *
192 * Swap rows
193 *
194  IF( ipv.NE.i )
195  \$ CALL cswap( n, a( ipv, 1 ), lda, a( i, 1 ), lda )
196  ipiv( i ) = ipv
197 *
198 * Swap columns
199 *
200  IF( jpv.NE.i )
201  \$ CALL cswap( n, a( 1, jpv ), 1, a( 1, i ), 1 )
202  jpiv( i ) = jpv
203 *
204 * Check for singularity
205 *
206  IF( abs( a( i, i ) ).LT.smin ) THEN
207  info = i
208  a( i, i ) = cmplx( smin, zero )
209  END IF
210  DO 30 j = i + 1, n
211  a( j, i ) = a( j, i ) / a( i, i )
212  30 CONTINUE
213  CALL cgeru( n-i, n-i, -cmplx( one ), a( i+1, i ), 1,
214  \$ a( i, i+1 ), lda, a( i+1, i+1 ), lda )
215  40 CONTINUE
216 *
217  IF( abs( a( n, n ) ).LT.smin ) THEN
218  info = n
219  a( n, n ) = cmplx( smin, zero )
220  END IF
221 *
222 * Set last pivots to N
223 *
224  ipiv( n ) = n
225  jpiv( n ) = n
226 *
227  RETURN
228 *
229 * End of CGETC2
230 *
231  END