LAPACK  3.8.0
LAPACK: Linear Algebra PACKage
Collaboration diagram for real:

Functions

subroutine slahrd (N, K, NB, A, LDA, TAU, T, LDT, Y, LDY)
 SLAHRD reduces the first nb columns of a general rectangular matrix A so that elements below the k-th subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of A. More...
 
integer function ilaslc (M, N, A, LDA)
 ILASLC scans a matrix for its last non-zero column. More...
 
integer function ilaslr (M, N, A, LDA)
 ILASLR scans a matrix for its last non-zero row. More...
 
subroutine slabrd (M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y, LDY)
 SLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form. More...
 
subroutine slacn2 (N, V, X, ISGN, EST, KASE, ISAVE)
 SLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vector products. More...
 
subroutine slacon (N, V, X, ISGN, EST, KASE)
 SLACON estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vector products. More...
 
subroutine sladiv (A, B, C, D, P, Q)
 SLADIV performs complex division in real arithmetic, avoiding unnecessary overflow. More...
 
subroutine sladiv1 (A, B, C, D, P, Q)
 
real function sladiv2 (A, B, C, D, R, T)
 
subroutine slaein (RIGHTV, NOINIT, N, H, LDH, WR, WI, VR, VI, B, LDB, WORK, EPS3, SMLNUM, BIGNUM, INFO)
 SLAEIN computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse iteration. More...
 
subroutine slaexc (WANTQ, N, T, LDT, Q, LDQ, J1, N1, N2, WORK, INFO)
 SLAEXC swaps adjacent diagonal blocks of a real upper quasi-triangular matrix in Schur canonical form, by an orthogonal similarity transformation. More...
 
subroutine slag2 (A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1, WR2, WI)
 SLAG2 computes the eigenvalues of a 2-by-2 generalized eigenvalue problem, with scaling as necessary to avoid over-/underflow. More...
 
subroutine slags2 (UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, SNV, CSQ, SNQ)
 SLAGS2 computes 2-by-2 orthogonal matrices U, V, and Q, and applies them to matrices A and B such that the rows of the transformed A and B are parallel. More...
 
subroutine slagtm (TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA, B, LDB)
 SLAGTM performs a matrix-matrix product of the form C = αAB+βC, where A is a tridiagonal matrix, B and C are rectangular matrices, and α and β are scalars, which may be 0, 1, or -1. More...
 
subroutine slagv2 (A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL, CSR, SNR)
 SLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular. More...
 
subroutine slahqr (WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILOZ, IHIZ, Z, LDZ, INFO)
 SLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using the double-shift/single-shift QR algorithm. More...
 
subroutine slahr2 (N, K, NB, A, LDA, TAU, T, LDT, Y, LDY)
 SLAHR2 reduces the specified number of first columns of a general rectangular matrix A so that elements below the specified subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of A. More...
 
subroutine slaic1 (JOB, J, X, SEST, W, GAMMA, SESTPR, S, C)
 SLAIC1 applies one step of incremental condition estimation. More...
 
subroutine slaln2 (LTRANS, NA, NW, SMIN, CA, A, LDA, D1, D2, B, LDB, WR, WI, X, LDX, SCALE, XNORM, INFO)
 SLALN2 solves a 1-by-1 or 2-by-2 linear system of equations of the specified form. More...
 
real function slangt (NORM, N, DL, D, DU)
 SLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix. More...
 
real function slanhs (NORM, N, A, LDA, WORK)
 SLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix. More...
 
real function slansb (NORM, UPLO, N, K, AB, LDAB, WORK)
 SLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix. More...
 
real function slansp (NORM, UPLO, N, AP, WORK)
 SLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form. More...
 
real function slantb (NORM, UPLO, DIAG, N, K, AB, LDAB, WORK)
 SLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix. More...
 
real function slantp (NORM, UPLO, DIAG, N, AP, WORK)
 SLANTP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular matrix supplied in packed form. More...
 
real function slantr (NORM, UPLO, DIAG, M, N, A, LDA, WORK)
 SLANTR returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix. More...
 
subroutine slanv2 (A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN)
 SLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form. More...
 
subroutine slapll (N, X, INCX, Y, INCY, SSMIN)
 SLAPLL measures the linear dependence of two vectors. More...
 
subroutine slapmr (FORWRD, M, N, X, LDX, K)
 SLAPMR rearranges rows of a matrix as specified by a permutation vector. More...
 
subroutine slapmt (FORWRD, M, N, X, LDX, K)
 SLAPMT performs a forward or backward permutation of the columns of a matrix. More...
 
subroutine slaqp2 (M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2, WORK)
 SLAQP2 computes a QR factorization with column pivoting of the matrix block. More...
 
subroutine slaqps (M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1, VN2, AUXV, F, LDF)
 SLAQPS computes a step of QR factorization with column pivoting of a real m-by-n matrix A by using BLAS level 3. More...
 
subroutine slaqr0 (WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO)
 SLAQR0 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition. More...
 
subroutine slaqr1 (N, H, LDH, SR1, SI1, SR2, SI2, V)
 SLAQR1 sets a scalar multiple of the first column of the product of 2-by-2 or 3-by-3 matrix H and specified shifts. More...
 
subroutine slaqr2 (WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ, IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T, LDT, NV, WV, LDWV, WORK, LWORK)
 SLAQR2 performs the orthogonal similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation). More...
 
subroutine slaqr3 (WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ, IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T, LDT, NV, WV, LDWV, WORK, LWORK)
 SLAQR3 performs the orthogonal similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation). More...
 
subroutine slaqr4 (WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO)
 SLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition. More...
 
subroutine slaqr5 (WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS, SR, SI, H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U, LDU, NV, WV, LDWV, NH, WH, LDWH)
 SLAQR5 performs a single small-bulge multi-shift QR sweep. More...
 
subroutine slaqsb (UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, EQUED)
 SLAQSB scales a symmetric/Hermitian band matrix, using scaling factors computed by spbequ. More...
 
subroutine slaqsp (UPLO, N, AP, S, SCOND, AMAX, EQUED)
 SLAQSP scales a symmetric/Hermitian matrix in packed storage, using scaling factors computed by sppequ. More...
 
subroutine slaqtr (LTRAN, LREAL, N, T, LDT, B, W, SCALE, X, WORK, INFO)
 SLAQTR solves a real quasi-triangular system of equations, or a complex quasi-triangular system of special form, in real arithmetic. More...
 
subroutine slar1v (N, B1, BN, LAMBDA, D, L, LD, LLD, PIVMIN, GAPTOL, Z, WANTNC, NEGCNT, ZTZ, MINGMA, R, ISUPPZ, NRMINV, RESID, RQCORR, WORK)
 SLAR1V computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix LDLT - λI. More...
 
subroutine slar2v (N, X, Y, Z, INCX, C, S, INCC)
 SLAR2V applies a vector of plane rotations with real cosines and real sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices. More...
 
subroutine slarf (SIDE, M, N, V, INCV, TAU, C, LDC, WORK)
 SLARF applies an elementary reflector to a general rectangular matrix. More...
 
subroutine slarfb (SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, T, LDT, C, LDC, WORK, LDWORK)
 SLARFB applies a block reflector or its transpose to a general rectangular matrix. More...
 
subroutine slarfg (N, ALPHA, X, INCX, TAU)
 SLARFG generates an elementary reflector (Householder matrix). More...
 
subroutine slarfgp (N, ALPHA, X, INCX, TAU)
 SLARFGP generates an elementary reflector (Householder matrix) with non-negative beta. More...
 
subroutine slarft (DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)
 SLARFT forms the triangular factor T of a block reflector H = I - vtvH More...
 
subroutine slarfx (SIDE, M, N, V, TAU, C, LDC, WORK)
 SLARFX applies an elementary reflector to a general rectangular matrix, with loop unrolling when the reflector has order ≤ 10. More...
 
subroutine slargv (N, X, INCX, Y, INCY, C, INCC)
 SLARGV generates a vector of plane rotations with real cosines and real sines. More...
 
subroutine slarrv (N, VL, VU, D, L, PIVMIN, ISPLIT, M, DOL, DOU, MINRGP, RTOL1, RTOL2, W, WERR, WGAP, IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ, WORK, IWORK, INFO)
 SLARRV computes the eigenvectors of the tridiagonal matrix T = L D LT given L, D and the eigenvalues of L D LT. More...
 
subroutine slartv (N, X, INCX, Y, INCY, C, S, INCC)
 SLARTV applies a vector of plane rotations with real cosines and real sines to the elements of a pair of vectors. More...
 
subroutine slaswp (N, A, LDA, K1, K2, IPIV, INCX)
 SLASWP performs a series of row interchanges on a general rectangular matrix. More...
 
subroutine slatbs (UPLO, TRANS, DIAG, NORMIN, N, KD, AB, LDAB, X, SCALE, CNORM, INFO)
 SLATBS solves a triangular banded system of equations. More...
 
subroutine slatdf (IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV, JPIV)
 SLATDF uses the LU factorization of the n-by-n matrix computed by sgetc2 and computes a contribution to the reciprocal Dif-estimate. More...
 
subroutine slatps (UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE, CNORM, INFO)
 SLATPS solves a triangular system of equations with the matrix held in packed storage. More...
 
subroutine slatrs (UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE, CNORM, INFO)
 SLATRS solves a triangular system of equations with the scale factor set to prevent overflow. More...
 
subroutine slauu2 (UPLO, N, A, LDA, INFO)
 SLAUU2 computes the product UUH or LHL, where U and L are upper or lower triangular matrices (unblocked algorithm). More...
 
subroutine slauum (UPLO, N, A, LDA, INFO)
 SLAUUM computes the product UUH or LHL, where U and L are upper or lower triangular matrices (blocked algorithm). More...
 
subroutine srscl (N, SA, SX, INCX)
 SRSCL multiplies a vector by the reciprocal of a real scalar. More...
 
subroutine stprfb (SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V, LDV, T, LDT, A, LDA, B, LDB, WORK, LDWORK)
 STPRFB applies a real or complex "triangular-pentagonal" blocked reflector to a real or complex matrix, which is composed of two blocks. More...
 

Detailed Description

This is the group of real other auxiliary routines