 LAPACK  3.8.0 LAPACK: Linear Algebra PACKage

## ◆ ztbtrs()

 subroutine ztbtrs ( character UPLO, character TRANS, character DIAG, integer N, integer KD, integer NRHS, complex*16, dimension( ldab, * ) AB, integer LDAB, complex*16, dimension( ldb, * ) B, integer LDB, integer INFO )

ZTBTRS

Download ZTBTRS + dependencies [TGZ] [ZIP] [TXT]

Purpose:
``` ZTBTRS solves a triangular system of the form

A * X = B,  A**T * X = B,  or  A**H * X = B,

where A is a triangular band matrix of order N, and B is an
N-by-NRHS matrix.  A check is made to verify that A is nonsingular.```
Parameters
 [in] UPLO ``` UPLO is CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular.``` [in] TRANS ``` TRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose)``` [in] DIAG ``` DIAG is CHARACTER*1 = 'N': A is non-unit triangular; = 'U': A is unit triangular.``` [in] N ``` N is INTEGER The order of the matrix A. N >= 0.``` [in] KD ``` KD is INTEGER The number of superdiagonals or subdiagonals of the triangular band matrix A. KD >= 0.``` [in] NRHS ``` NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.``` [in] AB ``` AB is COMPLEX*16 array, dimension (LDAB,N) The upper or lower triangular band matrix A, stored in the first kd+1 rows of AB. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). If DIAG = 'U', the diagonal elements of A are not referenced and are assumed to be 1.``` [in] LDAB ``` LDAB is INTEGER The leading dimension of the array AB. LDAB >= KD+1.``` [in,out] B ``` B is COMPLEX*16 array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, if INFO = 0, the solution matrix X.``` [in] LDB ``` LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).``` [out] INFO ``` INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the i-th diagonal element of A is zero, indicating that the matrix is singular and the solutions X have not been computed.```
Date
December 2016

Definition at line 148 of file ztbtrs.f.

148 *
149 * -- LAPACK computational routine (version 3.7.0) --
150 * -- LAPACK is a software package provided by Univ. of Tennessee, --
151 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
152 * December 2016
153 *
154 * .. Scalar Arguments ..
155  CHARACTER diag, trans, uplo
156  INTEGER info, kd, ldab, ldb, n, nrhs
157 * ..
158 * .. Array Arguments ..
159  COMPLEX*16 ab( ldab, * ), b( ldb, * )
160 * ..
161 *
162 * =====================================================================
163 *
164 * .. Parameters ..
165  COMPLEX*16 zero
166  parameter( zero = ( 0.0d+0, 0.0d+0 ) )
167 * ..
168 * .. Local Scalars ..
169  LOGICAL nounit, upper
170  INTEGER j
171 * ..
172 * .. External Functions ..
173  LOGICAL lsame
174  EXTERNAL lsame
175 * ..
176 * .. External Subroutines ..
177  EXTERNAL xerbla, ztbsv
178 * ..
179 * .. Intrinsic Functions ..
180  INTRINSIC max
181 * ..
182 * .. Executable Statements ..
183 *
184 * Test the input parameters.
185 *
186  info = 0
187  nounit = lsame( diag, 'N' )
188  upper = lsame( uplo, 'U' )
189  IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
190  info = -1
191  ELSE IF( .NOT.lsame( trans, 'N' ) .AND. .NOT.
192  \$ lsame( trans, 'T' ) .AND. .NOT.lsame( trans, 'C' ) ) THEN
193  info = -2
194  ELSE IF( .NOT.nounit .AND. .NOT.lsame( diag, 'U' ) ) THEN
195  info = -3
196  ELSE IF( n.LT.0 ) THEN
197  info = -4
198  ELSE IF( kd.LT.0 ) THEN
199  info = -5
200  ELSE IF( nrhs.LT.0 ) THEN
201  info = -6
202  ELSE IF( ldab.LT.kd+1 ) THEN
203  info = -8
204  ELSE IF( ldb.LT.max( 1, n ) ) THEN
205  info = -10
206  END IF
207  IF( info.NE.0 ) THEN
208  CALL xerbla( 'ZTBTRS', -info )
209  RETURN
210  END IF
211 *
212 * Quick return if possible
213 *
214  IF( n.EQ.0 )
215  \$ RETURN
216 *
217 * Check for singularity.
218 *
219  IF( nounit ) THEN
220  IF( upper ) THEN
221  DO 10 info = 1, n
222  IF( ab( kd+1, info ).EQ.zero )
223  \$ RETURN
224  10 CONTINUE
225  ELSE
226  DO 20 info = 1, n
227  IF( ab( 1, info ).EQ.zero )
228  \$ RETURN
229  20 CONTINUE
230  END IF
231  END IF
232  info = 0
233 *
234 * Solve A * X = B, A**T * X = B, or A**H * X = B.
235 *
236  DO 30 j = 1, nrhs
237  CALL ztbsv( uplo, trans, diag, n, kd, ab, ldab, b( 1, j ), 1 )
238  30 CONTINUE
239 *
240  RETURN
241 *
242 * End of ZTBTRS
243 *
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
subroutine ztbsv(UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)
ZTBSV
Definition: ztbsv.f:191
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
Here is the call graph for this function:
Here is the caller graph for this function: