 LAPACK  3.8.0 LAPACK: Linear Algebra PACKage

## ◆ zstemr()

 subroutine zstemr ( character JOBZ, character RANGE, integer N, double precision, dimension( * ) D, double precision, dimension( * ) E, double precision VL, double precision VU, integer IL, integer IU, integer M, double precision, dimension( * ) W, complex*16, dimension( ldz, * ) Z, integer LDZ, integer NZC, integer, dimension( * ) ISUPPZ, logical TRYRAC, double precision, dimension( * ) WORK, integer LWORK, integer, dimension( * ) IWORK, integer LIWORK, integer INFO )

ZSTEMR

Download ZSTEMR + dependencies [TGZ] [ZIP] [TXT]

Purpose:
``` ZSTEMR computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
a well defined set of pairwise different real eigenvalues, the corresponding
real eigenvectors are pairwise orthogonal.

The spectrum may be computed either completely or partially by specifying
either an interval (VL,VU] or a range of indices IL:IU for the desired
eigenvalues.

Depending on the number of desired eigenvalues, these are computed either
by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are
computed by the use of various suitable L D L^T factorizations near clusters
of close eigenvalues (referred to as RRRs, Relatively Robust
Representations). An informal sketch of the algorithm follows.

For each unreduced block (submatrix) of T,
(a) Compute T - sigma I  = L D L^T, so that L and D
define all the wanted eigenvalues to high relative accuracy.
This means that small relative changes in the entries of D and L
cause only small relative changes in the eigenvalues and
eigenvectors. The standard (unfactored) representation of the
tridiagonal matrix T does not have this property in general.
(b) Compute the eigenvalues to suitable accuracy.
If the eigenvectors are desired, the algorithm attains full
accuracy of the computed eigenvalues only right before
the corresponding vectors have to be computed, see steps c) and d).
(c) For each cluster of close eigenvalues, select a new
shift close to the cluster, find a new factorization, and refine
the shifted eigenvalues to suitable accuracy.
(d) For each eigenvalue with a large enough relative separation compute
the corresponding eigenvector by forming a rank revealing twisted
factorization. Go back to (c) for any clusters that remain.

For more details, see:
- Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
- Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
2004.  Also LAPACK Working Note 154.
- Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
tridiagonal eigenvalue/eigenvector problem",
Computer Science Division Technical Report No. UCB/CSD-97-971,
UC Berkeley, May 1997.

Further Details
1.ZSTEMR works only on machines which follow IEEE-754
floating-point standard in their handling of infinities and NaNs.
This permits the use of efficient inner loops avoiding a check for
zero divisors.

2. LAPACK routines can be used to reduce a complex Hermitean matrix to
real symmetric tridiagonal form.

(Any complex Hermitean tridiagonal matrix has real values on its diagonal
and potentially complex numbers on its off-diagonals. By applying a
similarity transform with an appropriate diagonal matrix
diag(1,e^{i \phy_1}, ... , e^{i \phy_{n-1}}), the complex Hermitean
matrix can be transformed into a real symmetric matrix and complex
arithmetic can be entirely avoided.)

While the eigenvectors of the real symmetric tridiagonal matrix are real,
the eigenvectors of original complex Hermitean matrix have complex entries
in general.
Since LAPACK drivers overwrite the matrix data with the eigenvectors,
ZSTEMR accepts complex workspace to facilitate interoperability
with ZUNMTR or ZUPMTR.```
Parameters
 [in] JOBZ ``` JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors.``` [in] RANGE ``` RANGE is CHARACTER*1 = 'A': all eigenvalues will be found. = 'V': all eigenvalues in the half-open interval (VL,VU] will be found. = 'I': the IL-th through IU-th eigenvalues will be found.``` [in] N ``` N is INTEGER The order of the matrix. N >= 0.``` [in,out] D ``` D is DOUBLE PRECISION array, dimension (N) On entry, the N diagonal elements of the tridiagonal matrix T. On exit, D is overwritten.``` [in,out] E ``` E is DOUBLE PRECISION array, dimension (N) On entry, the (N-1) subdiagonal elements of the tridiagonal matrix T in elements 1 to N-1 of E. E(N) need not be set on input, but is used internally as workspace. On exit, E is overwritten.``` [in] VL ``` VL is DOUBLE PRECISION If RANGE='V', the lower bound of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = 'A' or 'I'.``` [in] VU ``` VU is DOUBLE PRECISION If RANGE='V', the upper bound of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = 'A' or 'I'.``` [in] IL ``` IL is INTEGER If RANGE='I', the index of the smallest eigenvalue to be returned. 1 <= IL <= IU <= N, if N > 0. Not referenced if RANGE = 'A' or 'V'.``` [in] IU ``` IU is INTEGER If RANGE='I', the index of the largest eigenvalue to be returned. 1 <= IL <= IU <= N, if N > 0. Not referenced if RANGE = 'A' or 'V'.``` [out] M ``` M is INTEGER The total number of eigenvalues found. 0 <= M <= N. If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.``` [out] W ``` W is DOUBLE PRECISION array, dimension (N) The first M elements contain the selected eigenvalues in ascending order.``` [out] Z ``` Z is COMPLEX*16 array, dimension (LDZ, max(1,M) ) If JOBZ = 'V', and if INFO = 0, then the first M columns of Z contain the orthonormal eigenvectors of the matrix T corresponding to the selected eigenvalues, with the i-th column of Z holding the eigenvector associated with W(i). If JOBZ = 'N', then Z is not referenced. Note: the user must ensure that at least max(1,M) columns are supplied in the array Z; if RANGE = 'V', the exact value of M is not known in advance and can be computed with a workspace query by setting NZC = -1, see below.``` [in] LDZ ``` LDZ is INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', then LDZ >= max(1,N).``` [in] NZC ``` NZC is INTEGER The number of eigenvectors to be held in the array Z. If RANGE = 'A', then NZC >= max(1,N). If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU]. If RANGE = 'I', then NZC >= IU-IL+1. If NZC = -1, then a workspace query is assumed; the routine calculates the number of columns of the array Z that are needed to hold the eigenvectors. This value is returned as the first entry of the Z array, and no error message related to NZC is issued by XERBLA.``` [out] ISUPPZ ``` ISUPPZ is INTEGER array, dimension ( 2*max(1,M) ) The support of the eigenvectors in Z, i.e., the indices indicating the nonzero elements in Z. The i-th computed eigenvector is nonzero only in elements ISUPPZ( 2*i-1 ) through ISUPPZ( 2*i ). This is relevant in the case when the matrix is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.``` [in,out] TRYRAC ``` TRYRAC is LOGICAL If TRYRAC.EQ..TRUE., indicates that the code should check whether the tridiagonal matrix defines its eigenvalues to high relative accuracy. If so, the code uses relative-accuracy preserving algorithms that might be (a bit) slower depending on the matrix. If the matrix does not define its eigenvalues to high relative accuracy, the code can uses possibly faster algorithms. If TRYRAC.EQ..FALSE., the code is not required to guarantee relatively accurate eigenvalues and can use the fastest possible techniques. On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix does not define its eigenvalues to high relative accuracy.``` [out] WORK ``` WORK is DOUBLE PRECISION array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal (and minimal) LWORK.``` [in] LWORK ``` LWORK is INTEGER The dimension of the array WORK. LWORK >= max(1,18*N) if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.``` [out] IWORK ``` IWORK is INTEGER array, dimension (LIWORK) On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.``` [in] LIWORK ``` LIWORK is INTEGER The dimension of the array IWORK. LIWORK >= max(1,10*N) if the eigenvectors are desired, and LIWORK >= max(1,8*N) if only the eigenvalues are to be computed. If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the IWORK array, returns this value as the first entry of the IWORK array, and no error message related to LIWORK is issued by XERBLA.``` [out] INFO ``` INFO is INTEGER On exit, INFO = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = 1X, internal error in DLARRE, if INFO = 2X, internal error in ZLARRV. Here, the digit X = ABS( IINFO ) < 10, where IINFO is the nonzero error code returned by DLARRE or ZLARRV, respectively.```
Date
June 2016
Contributors:
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA

Definition at line 340 of file zstemr.f.

340 *
341 * -- LAPACK computational routine (version 3.7.1) --
342 * -- LAPACK is a software package provided by Univ. of Tennessee, --
343 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
344 * June 2016
345 *
346 * .. Scalar Arguments ..
347  CHARACTER jobz, range
348  LOGICAL tryrac
349  INTEGER il, info, iu, ldz, nzc, liwork, lwork, m, n
350  DOUBLE PRECISION vl, vu
351 * ..
352 * .. Array Arguments ..
353  INTEGER isuppz( * ), iwork( * )
354  DOUBLE PRECISION d( * ), e( * ), w( * ), work( * )
355  COMPLEX*16 z( ldz, * )
356 * ..
357 *
358 * =====================================================================
359 *
360 * .. Parameters ..
361  DOUBLE PRECISION zero, one, four, minrgp
362  parameter( zero = 0.0d0, one = 1.0d0,
363  \$ four = 4.0d0,
364  \$ minrgp = 1.0d-3 )
365 * ..
366 * .. Local Scalars ..
367  LOGICAL alleig, indeig, lquery, valeig, wantz, zquery
368  INTEGER i, ibegin, iend, ifirst, iil, iindbl, iindw,
369  \$ iindwk, iinfo, iinspl, iiu, ilast, in, indd,
370  \$ inde2, inderr, indgp, indgrs, indwrk, itmp,
371  \$ itmp2, j, jblk, jj, liwmin, lwmin, nsplit,
372  \$ nzcmin, offset, wbegin, wend
373  DOUBLE PRECISION bignum, cs, eps, pivmin, r1, r2, rmax, rmin,
374  \$ rtol1, rtol2, safmin, scale, smlnum, sn,
375  \$ thresh, tmp, tnrm, wl, wu
376 * ..
377 * ..
378 * .. External Functions ..
379  LOGICAL lsame
380  DOUBLE PRECISION dlamch, dlanst
381  EXTERNAL lsame, dlamch, dlanst
382 * ..
383 * .. External Subroutines ..
384  EXTERNAL dcopy, dlae2, dlaev2, dlarrc, dlarre, dlarrj,
386 * ..
387 * .. Intrinsic Functions ..
388  INTRINSIC max, min, sqrt
389
390
391 * ..
392 * .. Executable Statements ..
393 *
394 * Test the input parameters.
395 *
396  wantz = lsame( jobz, 'V' )
397  alleig = lsame( range, 'A' )
398  valeig = lsame( range, 'V' )
399  indeig = lsame( range, 'I' )
400 *
401  lquery = ( ( lwork.EQ.-1 ).OR.( liwork.EQ.-1 ) )
402  zquery = ( nzc.EQ.-1 )
403
404 * DSTEMR needs WORK of size 6*N, IWORK of size 3*N.
405 * In addition, DLARRE needs WORK of size 6*N, IWORK of size 5*N.
406 * Furthermore, ZLARRV needs WORK of size 12*N, IWORK of size 7*N.
407  IF( wantz ) THEN
408  lwmin = 18*n
409  liwmin = 10*n
410  ELSE
411 * need less workspace if only the eigenvalues are wanted
412  lwmin = 12*n
413  liwmin = 8*n
414  ENDIF
415
416  wl = zero
417  wu = zero
418  iil = 0
419  iiu = 0
420  nsplit = 0
421
422  IF( valeig ) THEN
423 * We do not reference VL, VU in the cases RANGE = 'I','A'
424 * The interval (WL, WU] contains all the wanted eigenvalues.
425 * It is either given by the user or computed in DLARRE.
426  wl = vl
427  wu = vu
428  ELSEIF( indeig ) THEN
429 * We do not reference IL, IU in the cases RANGE = 'V','A'
430  iil = il
431  iiu = iu
432  ENDIF
433 *
434  info = 0
435  IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
436  info = -1
437  ELSE IF( .NOT.( alleig .OR. valeig .OR. indeig ) ) THEN
438  info = -2
439  ELSE IF( n.LT.0 ) THEN
440  info = -3
441  ELSE IF( valeig .AND. n.GT.0 .AND. wu.LE.wl ) THEN
442  info = -7
443  ELSE IF( indeig .AND. ( iil.LT.1 .OR. iil.GT.n ) ) THEN
444  info = -8
445  ELSE IF( indeig .AND. ( iiu.LT.iil .OR. iiu.GT.n ) ) THEN
446  info = -9
447  ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
448  info = -13
449  ELSE IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
450  info = -17
451  ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
452  info = -19
453  END IF
454 *
455 * Get machine constants.
456 *
457  safmin = dlamch( 'Safe minimum' )
458  eps = dlamch( 'Precision' )
459  smlnum = safmin / eps
460  bignum = one / smlnum
461  rmin = sqrt( smlnum )
462  rmax = min( sqrt( bignum ), one / sqrt( sqrt( safmin ) ) )
463 *
464  IF( info.EQ.0 ) THEN
465  work( 1 ) = lwmin
466  iwork( 1 ) = liwmin
467 *
468  IF( wantz .AND. alleig ) THEN
469  nzcmin = n
470  ELSE IF( wantz .AND. valeig ) THEN
471  CALL dlarrc( 'T', n, vl, vu, d, e, safmin,
472  \$ nzcmin, itmp, itmp2, info )
473  ELSE IF( wantz .AND. indeig ) THEN
474  nzcmin = iiu-iil+1
475  ELSE
476 * WANTZ .EQ. FALSE.
477  nzcmin = 0
478  ENDIF
479  IF( zquery .AND. info.EQ.0 ) THEN
480  z( 1,1 ) = nzcmin
481  ELSE IF( nzc.LT.nzcmin .AND. .NOT.zquery ) THEN
482  info = -14
483  END IF
484  END IF
485
486  IF( info.NE.0 ) THEN
487 *
488  CALL xerbla( 'ZSTEMR', -info )
489 *
490  RETURN
491  ELSE IF( lquery .OR. zquery ) THEN
492  RETURN
493  END IF
494 *
495 * Handle N = 0, 1, and 2 cases immediately
496 *
497  m = 0
498  IF( n.EQ.0 )
499  \$ RETURN
500 *
501  IF( n.EQ.1 ) THEN
502  IF( alleig .OR. indeig ) THEN
503  m = 1
504  w( 1 ) = d( 1 )
505  ELSE
506  IF( wl.LT.d( 1 ) .AND. wu.GE.d( 1 ) ) THEN
507  m = 1
508  w( 1 ) = d( 1 )
509  END IF
510  END IF
511  IF( wantz.AND.(.NOT.zquery) ) THEN
512  z( 1, 1 ) = one
513  isuppz(1) = 1
514  isuppz(2) = 1
515  END IF
516  RETURN
517  END IF
518 *
519  IF( n.EQ.2 ) THEN
520  IF( .NOT.wantz ) THEN
521  CALL dlae2( d(1), e(1), d(2), r1, r2 )
522  ELSE IF( wantz.AND.(.NOT.zquery) ) THEN
523  CALL dlaev2( d(1), e(1), d(2), r1, r2, cs, sn )
524  END IF
525  IF( alleig.OR.
526  \$ (valeig.AND.(r2.GT.wl).AND.
527  \$ (r2.LE.wu)).OR.
528  \$ (indeig.AND.(iil.EQ.1)) ) THEN
529  m = m+1
530  w( m ) = r2
531  IF( wantz.AND.(.NOT.zquery) ) THEN
532  z( 1, m ) = -sn
533  z( 2, m ) = cs
534 * Note: At most one of SN and CS can be zero.
535  IF (sn.NE.zero) THEN
536  IF (cs.NE.zero) THEN
537  isuppz(2*m-1) = 1
538  isuppz(2*m) = 2
539  ELSE
540  isuppz(2*m-1) = 1
541  isuppz(2*m) = 1
542  END IF
543  ELSE
544  isuppz(2*m-1) = 2
545  isuppz(2*m) = 2
546  END IF
547  ENDIF
548  ENDIF
549  IF( alleig.OR.
550  \$ (valeig.AND.(r1.GT.wl).AND.
551  \$ (r1.LE.wu)).OR.
552  \$ (indeig.AND.(iiu.EQ.2)) ) THEN
553  m = m+1
554  w( m ) = r1
555  IF( wantz.AND.(.NOT.zquery) ) THEN
556  z( 1, m ) = cs
557  z( 2, m ) = sn
558 * Note: At most one of SN and CS can be zero.
559  IF (sn.NE.zero) THEN
560  IF (cs.NE.zero) THEN
561  isuppz(2*m-1) = 1
562  isuppz(2*m) = 2
563  ELSE
564  isuppz(2*m-1) = 1
565  isuppz(2*m) = 1
566  END IF
567  ELSE
568  isuppz(2*m-1) = 2
569  isuppz(2*m) = 2
570  END IF
571  ENDIF
572  ENDIF
573  ELSE
574
575 * Continue with general N
576
577  indgrs = 1
578  inderr = 2*n + 1
579  indgp = 3*n + 1
580  indd = 4*n + 1
581  inde2 = 5*n + 1
582  indwrk = 6*n + 1
583 *
584  iinspl = 1
585  iindbl = n + 1
586  iindw = 2*n + 1
587  iindwk = 3*n + 1
588 *
589 * Scale matrix to allowable range, if necessary.
590 * The allowable range is related to the PIVMIN parameter; see the
591 * comments in DLARRD. The preference for scaling small values
592 * up is heuristic; we expect users' matrices not to be close to the
593 * RMAX threshold.
594 *
595  scale = one
596  tnrm = dlanst( 'M', n, d, e )
597  IF( tnrm.GT.zero .AND. tnrm.LT.rmin ) THEN
598  scale = rmin / tnrm
599  ELSE IF( tnrm.GT.rmax ) THEN
600  scale = rmax / tnrm
601  END IF
602  IF( scale.NE.one ) THEN
603  CALL dscal( n, scale, d, 1 )
604  CALL dscal( n-1, scale, e, 1 )
605  tnrm = tnrm*scale
606  IF( valeig ) THEN
607 * If eigenvalues in interval have to be found,
608 * scale (WL, WU] accordingly
609  wl = wl*scale
610  wu = wu*scale
611  ENDIF
612  END IF
613 *
614 * Compute the desired eigenvalues of the tridiagonal after splitting
615 * into smaller subblocks if the corresponding off-diagonal elements
616 * are small
617 * THRESH is the splitting parameter for DLARRE
618 * A negative THRESH forces the old splitting criterion based on the
619 * size of the off-diagonal. A positive THRESH switches to splitting
620 * which preserves relative accuracy.
621 *
622  IF( tryrac ) THEN
623 * Test whether the matrix warrants the more expensive relative approach.
624  CALL dlarrr( n, d, e, iinfo )
625  ELSE
626 * The user does not care about relative accurately eigenvalues
627  iinfo = -1
628  ENDIF
629 * Set the splitting criterion
630  IF (iinfo.EQ.0) THEN
631  thresh = eps
632  ELSE
633  thresh = -eps
634 * relative accuracy is desired but T does not guarantee it
635  tryrac = .false.
636  ENDIF
637 *
638  IF( tryrac ) THEN
639 * Copy original diagonal, needed to guarantee relative accuracy
640  CALL dcopy(n,d,1,work(indd),1)
641  ENDIF
642 * Store the squares of the offdiagonal values of T
643  DO 5 j = 1, n-1
644  work( inde2+j-1 ) = e(j)**2
645  5 CONTINUE
646
647 * Set the tolerance parameters for bisection
648  IF( .NOT.wantz ) THEN
649 * DLARRE computes the eigenvalues to full precision.
650  rtol1 = four * eps
651  rtol2 = four * eps
652  ELSE
653 * DLARRE computes the eigenvalues to less than full precision.
654 * ZLARRV will refine the eigenvalue approximations, and we only
655 * need less accurate initial bisection in DLARRE.
656 * Note: these settings do only affect the subset case and DLARRE
657  rtol1 = sqrt(eps)
658  rtol2 = max( sqrt(eps)*5.0d-3, four * eps )
659  ENDIF
660  CALL dlarre( range, n, wl, wu, iil, iiu, d, e,
661  \$ work(inde2), rtol1, rtol2, thresh, nsplit,
662  \$ iwork( iinspl ), m, w, work( inderr ),
663  \$ work( indgp ), iwork( iindbl ),
664  \$ iwork( iindw ), work( indgrs ), pivmin,
665  \$ work( indwrk ), iwork( iindwk ), iinfo )
666  IF( iinfo.NE.0 ) THEN
667  info = 10 + abs( iinfo )
668  RETURN
669  END IF
670 * Note that if RANGE .NE. 'V', DLARRE computes bounds on the desired
671 * part of the spectrum. All desired eigenvalues are contained in
672 * (WL,WU]
673
674
675  IF( wantz ) THEN
676 *
677 * Compute the desired eigenvectors corresponding to the computed
678 * eigenvalues
679 *
680  CALL zlarrv( n, wl, wu, d, e,
681  \$ pivmin, iwork( iinspl ), m,
682  \$ 1, m, minrgp, rtol1, rtol2,
683  \$ w, work( inderr ), work( indgp ), iwork( iindbl ),
684  \$ iwork( iindw ), work( indgrs ), z, ldz,
685  \$ isuppz, work( indwrk ), iwork( iindwk ), iinfo )
686  IF( iinfo.NE.0 ) THEN
687  info = 20 + abs( iinfo )
688  RETURN
689  END IF
690  ELSE
691 * DLARRE computes eigenvalues of the (shifted) root representation
692 * ZLARRV returns the eigenvalues of the unshifted matrix.
693 * However, if the eigenvectors are not desired by the user, we need
694 * to apply the corresponding shifts from DLARRE to obtain the
695 * eigenvalues of the original matrix.
696  DO 20 j = 1, m
697  itmp = iwork( iindbl+j-1 )
698  w( j ) = w( j ) + e( iwork( iinspl+itmp-1 ) )
699  20 CONTINUE
700  END IF
701 *
702
703  IF ( tryrac ) THEN
704 * Refine computed eigenvalues so that they are relatively accurate
705 * with respect to the original matrix T.
706  ibegin = 1
707  wbegin = 1
708  DO 39 jblk = 1, iwork( iindbl+m-1 )
709  iend = iwork( iinspl+jblk-1 )
710  in = iend - ibegin + 1
711  wend = wbegin - 1
712 * check if any eigenvalues have to be refined in this block
713  36 CONTINUE
714  IF( wend.LT.m ) THEN
715  IF( iwork( iindbl+wend ).EQ.jblk ) THEN
716  wend = wend + 1
717  GO TO 36
718  END IF
719  END IF
720  IF( wend.LT.wbegin ) THEN
721  ibegin = iend + 1
722  GO TO 39
723  END IF
724
725  offset = iwork(iindw+wbegin-1)-1
726  ifirst = iwork(iindw+wbegin-1)
727  ilast = iwork(iindw+wend-1)
728  rtol2 = four * eps
729  CALL dlarrj( in,
730  \$ work(indd+ibegin-1), work(inde2+ibegin-1),
731  \$ ifirst, ilast, rtol2, offset, w(wbegin),
732  \$ work( inderr+wbegin-1 ),
733  \$ work( indwrk ), iwork( iindwk ), pivmin,
734  \$ tnrm, iinfo )
735  ibegin = iend + 1
736  wbegin = wend + 1
737  39 CONTINUE
738  ENDIF
739 *
740 * If matrix was scaled, then rescale eigenvalues appropriately.
741 *
742  IF( scale.NE.one ) THEN
743  CALL dscal( m, one / scale, w, 1 )
744  END IF
745  END IF
746 *
747 * If eigenvalues are not in increasing order, then sort them,
748 * possibly along with eigenvectors.
749 *
750  IF( nsplit.GT.1 .OR. n.EQ.2 ) THEN
751  IF( .NOT. wantz ) THEN
752  CALL dlasrt( 'I', m, w, iinfo )
753  IF( iinfo.NE.0 ) THEN
754  info = 3
755  RETURN
756  END IF
757  ELSE
758  DO 60 j = 1, m - 1
759  i = 0
760  tmp = w( j )
761  DO 50 jj = j + 1, m
762  IF( w( jj ).LT.tmp ) THEN
763  i = jj
764  tmp = w( jj )
765  END IF
766  50 CONTINUE
767  IF( i.NE.0 ) THEN
768  w( i ) = w( j )
769  w( j ) = tmp
770  IF( wantz ) THEN
771  CALL zswap( n, z( 1, i ), 1, z( 1, j ), 1 )
772  itmp = isuppz( 2*i-1 )
773  isuppz( 2*i-1 ) = isuppz( 2*j-1 )
774  isuppz( 2*j-1 ) = itmp
775  itmp = isuppz( 2*i )
776  isuppz( 2*i ) = isuppz( 2*j )
777  isuppz( 2*j ) = itmp
778  END IF
779  END IF
780  60 CONTINUE
781  END IF
782  ENDIF
783 *
784 *
785  work( 1 ) = lwmin
786  iwork( 1 ) = liwmin
787  RETURN
788 *
789 * End of ZSTEMR
790 *
subroutine dlarrc(JOBT, N, VL, VU, D, E, PIVMIN, EIGCNT, LCNT, RCNT, INFO)
DLARRC computes the number of eigenvalues of the symmetric tridiagonal matrix.
Definition: dlarrc.f:139
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
subroutine dlae2(A, B, C, RT1, RT2)
DLAE2 computes the eigenvalues of a 2-by-2 symmetric matrix.
Definition: dlae2.f:104
subroutine dscal(N, DA, DX, INCX)
DSCAL
Definition: dscal.f:81
subroutine dlarrr(N, D, E, INFO)
DLARRR performs tests to decide whether the symmetric tridiagonal matrix T warrants expensive computa...
Definition: dlarrr.f:96
subroutine dlarrj(N, D, E2, IFIRST, ILAST, RTOL, OFFSET, W, WERR, WORK, IWORK, PIVMIN, SPDIAM, INFO)
DLARRJ performs refinement of the initial estimates of the eigenvalues of the matrix T...
Definition: dlarrj.f:170
subroutine zlarrv(N, VL, VU, D, L, PIVMIN, ISPLIT, M, DOL, DOU, MINRGP, RTOL1, RTOL2, W, WERR, WGAP, IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ, WORK, IWORK, INFO)
ZLARRV computes the eigenvectors of the tridiagonal matrix T = L D LT given L, D and the eigenvalues ...
Definition: zlarrv.f:288
subroutine dcopy(N, DX, INCX, DY, INCY)
DCOPY
Definition: dcopy.f:84
subroutine zswap(N, ZX, INCX, ZY, INCY)
ZSWAP
Definition: zswap.f:83
subroutine dlasrt(ID, N, D, INFO)
DLASRT sorts numbers in increasing or decreasing order.
Definition: dlasrt.f:90
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine dlaev2(A, B, C, RT1, RT2, CS1, SN1)
DLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.
Definition: dlaev2.f:122
double precision function dlamch(CMACH)
DLAMCH
Definition: dlamch.f:65
double precision function dlanst(NORM, N, D, E)
DLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix.
Definition: dlanst.f:102
subroutine dlarre(RANGE, N, VL, VU, IL, IU, D, E, E2, RTOL1, RTOL2, SPLTOL, NSPLIT, ISPLIT, M, W, WERR, WGAP, IBLOCK, INDEXW, GERS, PIVMIN, WORK, IWORK, INFO)
DLARRE given the tridiagonal matrix T, sets small off-diagonal elements to zero and for each unreduce...
Definition: dlarre.f:307
Here is the call graph for this function:
Here is the caller graph for this function: