 LAPACK  3.10.0 LAPACK: Linear Algebra PACKage

## ◆ cdotc()

 complex function cdotc ( integer N, complex, dimension(*) CX, integer INCX, complex, dimension(*) CY, integer INCY )

CDOTC

Purpose:
``` CDOTC forms the dot product of two complex vectors
CDOTC = X^H * Y```
Parameters
 [in] N ``` N is INTEGER number of elements in input vector(s)``` [in] CX ` CX is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCX ) )` [in] INCX ``` INCX is INTEGER storage spacing between elements of CX``` [in] CY ` CY is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCY ) )` [in] INCY ``` INCY is INTEGER storage spacing between elements of CY```
Further Details:
```     jack dongarra, linpack,  3/11/78.
modified 12/3/93, array(1) declarations changed to array(*)```

Definition at line 82 of file cdotc.f.

83 *
84 * -- Reference BLAS level1 routine --
85 * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
86 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
87 *
88 * .. Scalar Arguments ..
89  INTEGER INCX,INCY,N
90 * ..
91 * .. Array Arguments ..
92  COMPLEX CX(*),CY(*)
93 * ..
94 *
95 * =====================================================================
96 *
97 * .. Local Scalars ..
98  COMPLEX CTEMP
99  INTEGER I,IX,IY
100 * ..
101 * .. Intrinsic Functions ..
102  INTRINSIC conjg
103 * ..
104  ctemp = (0.0,0.0)
105  cdotc = (0.0,0.0)
106  IF (n.LE.0) RETURN
107  IF (incx.EQ.1 .AND. incy.EQ.1) THEN
108 *
109 * code for both increments equal to 1
110 *
111  DO i = 1,n
112  ctemp = ctemp + conjg(cx(i))*cy(i)
113  END DO
114  ELSE
115 *
116 * code for unequal increments or equal increments
117 * not equal to 1
118 *
119  ix = 1
120  iy = 1
121  IF (incx.LT.0) ix = (-n+1)*incx + 1
122  IF (incy.LT.0) iy = (-n+1)*incy + 1
123  DO i = 1,n
124  ctemp = ctemp + conjg(cx(ix))*cy(iy)
125  ix = ix + incx
126  iy = iy + incy
127  END DO
128  END IF
129  cdotc = ctemp
130  RETURN
131 *
132 * End of CDOTC
133 *
complex function cdotc(N, CX, INCX, CY, INCY)
CDOTC
Definition: cdotc.f:83
Here is the caller graph for this function: