LAPACK  3.8.0 LAPACK: Linear Algebra PACKage

◆ cdrvsy()

 subroutine cdrvsy ( logical, dimension( * ) DOTYPE, integer NN, integer, dimension( * ) NVAL, integer NRHS, real THRESH, logical TSTERR, integer NMAX, complex, dimension( * ) A, complex, dimension( * ) AFAC, complex, dimension( * ) AINV, complex, dimension( * ) B, complex, dimension( * ) X, complex, dimension( * ) XACT, complex, dimension( * ) WORK, real, dimension( * ) RWORK, integer, dimension( * ) IWORK, integer NOUT )

CDRVSY

CDRVSYX

Purpose:
` CDRVSY tests the driver routines CSYSV and -SVX.`
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix dimension N.``` [in] NRHS ``` NRHS is INTEGER The number of right hand side vectors to be generated for each linear system.``` [in] THRESH ``` THRESH is REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for N, used in dimensioning the work arrays.``` [out] A ` A is COMPLEX array, dimension (NMAX*NMAX)` [out] AFAC ` AFAC is COMPLEX array, dimension (NMAX*NMAX)` [out] AINV ` AINV is COMPLEX array, dimension (NMAX*NMAX)` [out] B ` B is COMPLEX array, dimension (NMAX*NRHS)` [out] X ` X is COMPLEX array, dimension (NMAX*NRHS)` [out] XACT ` XACT is COMPLEX array, dimension (NMAX*NRHS)` [out] WORK ` WORK is COMPLEX array, dimension (NMAX*max(2,NRHS))` [out] RWORK ` RWORK is REAL array, dimension (NMAX+2*NRHS)` [out] IWORK ` IWORK is INTEGER array, dimension (NMAX)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```
Date
November 2013
Purpose:
``` CDRVSY tests the driver routines CSYSV, -SVX, and -SVXX.

Note that this file is used only when the XBLAS are available,
otherwise cdrvsy.f defines this subroutine.```
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix dimension N.``` [in] NRHS ``` NRHS is INTEGER The number of right hand side vectors to be generated for each linear system.``` [in] THRESH ``` THRESH is REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for N, used in dimensioning the work arrays.``` [out] A ` A is COMPLEX array, dimension (NMAX*NMAX)` [out] AFAC ` AFAC is COMPLEX array, dimension (NMAX*NMAX)` [out] AINV ` AINV is COMPLEX array, dimension (NMAX*NMAX)` [out] B ` B is COMPLEX array, dimension (NMAX*NRHS)` [out] X ` X is COMPLEX array, dimension (NMAX*NRHS)` [out] XACT ` XACT is COMPLEX array, dimension (NMAX*NRHS)` [out] WORK ``` WORK is COMPLEX array, dimension (NMAX*max(2,NRHS))``` [out] RWORK ` RWORK is REAL array, dimension (2*NMAX+2*NRHS)` [out] IWORK ` IWORK is INTEGER array, dimension (NMAX)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```
Date
April 2012

Definition at line 155 of file cdrvsy.f.

155 *
156 * -- LAPACK test routine (version 3.5.0) --
157 * -- LAPACK is a software package provided by Univ. of Tennessee, --
158 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
159 * November 2013
160 *
161 * .. Scalar Arguments ..
162  LOGICAL tsterr
163  INTEGER nmax, nn, nout, nrhs
164  REAL thresh
165 * ..
166 * .. Array Arguments ..
167  LOGICAL dotype( * )
168  INTEGER iwork( * ), nval( * )
169  REAL rwork( * )
170  COMPLEX a( * ), afac( * ), ainv( * ), b( * ),
171  \$ work( * ), x( * ), xact( * )
172 * ..
173 *
174 * =====================================================================
175 *
176 * .. Parameters ..
177  REAL one, zero
178  parameter( one = 1.0e+0, zero = 0.0e+0 )
179  INTEGER ntypes, ntests
180  parameter( ntypes = 11, ntests = 6 )
181  INTEGER nfact
182  parameter( nfact = 2 )
183 * ..
184 * .. Local Scalars ..
185  LOGICAL zerot
186  CHARACTER dist, fact, TYPE, uplo, xtype
187  CHARACTER*3 path
188  INTEGER i, i1, i2, ifact, imat, in, info, ioff, iuplo,
189  \$ izero, j, k, k1, kl, ku, lda, lwork, mode, n,
190  \$ nb, nbmin, nerrs, nfail, nimat, nrun, nt
191  REAL ainvnm, anorm, cndnum, rcond, rcondc
192 * ..
193 * .. Local Arrays ..
194  CHARACTER facts( nfact ), uplos( 2 )
195  INTEGER iseed( 4 ), iseedy( 4 )
196  REAL result( ntests )
197 * ..
198 * .. External Functions ..
199  REAL clansy, sget06
200  EXTERNAL clansy, sget06
201 * ..
202 * .. External Subroutines ..
203  EXTERNAL aladhd, alaerh, alasvm, cerrvx, cget04, clacpy,
206  \$ xlaenv
207 * ..
208 * .. Scalars in Common ..
209  LOGICAL lerr, ok
210  CHARACTER*32 srnamt
211  INTEGER infot, nunit
212 * ..
213 * .. Common blocks ..
214  COMMON / infoc / infot, nunit, ok, lerr
215  COMMON / srnamc / srnamt
216 * ..
217 * .. Intrinsic Functions ..
218  INTRINSIC cmplx, max, min
219 * ..
220 * .. Data statements ..
221  DATA iseedy / 1988, 1989, 1990, 1991 /
222  DATA uplos / 'U', 'L' / , facts / 'F', 'N' /
223 * ..
224 * .. Executable Statements ..
225 *
226 * Initialize constants and the random number seed.
227 *
228  path( 1: 1 ) = 'Complex precision'
229  path( 2: 3 ) = 'SY'
230  nrun = 0
231  nfail = 0
232  nerrs = 0
233  DO 10 i = 1, 4
234  iseed( i ) = iseedy( i )
235  10 CONTINUE
236  lwork = max( 2*nmax, nmax*nrhs )
237 *
238 * Test the error exits
239 *
240  IF( tsterr )
241  \$ CALL cerrvx( path, nout )
242  infot = 0
243 *
244 * Set the block size and minimum block size for testing.
245 *
246  nb = 1
247  nbmin = 2
248  CALL xlaenv( 1, nb )
249  CALL xlaenv( 2, nbmin )
250 *
251 * Do for each value of N in NVAL
252 *
253  DO 180 in = 1, nn
254  n = nval( in )
255  lda = max( n, 1 )
256  xtype = 'N'
257  nimat = ntypes
258  IF( n.LE.0 )
259  \$ nimat = 1
260 *
261  DO 170 imat = 1, nimat
262 *
263 * Do the tests only if DOTYPE( IMAT ) is true.
264 *
265  IF( .NOT.dotype( imat ) )
266  \$ GO TO 170
267 *
268 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
269 *
270  zerot = imat.GE.3 .AND. imat.LE.6
271  IF( zerot .AND. n.LT.imat-2 )
272  \$ GO TO 170
273 *
274 * Do first for UPLO = 'U', then for UPLO = 'L'
275 *
276  DO 160 iuplo = 1, 2
277  uplo = uplos( iuplo )
278 *
279  IF( imat.NE.ntypes ) THEN
280 *
281 * Set up parameters with CLATB4 and generate a test
282 * matrix with CLATMS.
283 *
284  CALL clatb4( path, imat, n, n, TYPE, kl, ku, anorm,
285  \$ mode, cndnum, dist )
286 *
287  srnamt = 'CLATMS'
288  CALL clatms( n, n, dist, iseed, TYPE, rwork, mode,
289  \$ cndnum, anorm, kl, ku, uplo, a, lda,
290  \$ work, info )
291 *
292 * Check error code from CLATMS.
293 *
294  IF( info.NE.0 ) THEN
295  CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n,
296  \$ -1, -1, -1, imat, nfail, nerrs, nout )
297  GO TO 160
298  END IF
299 *
300 * For types 3-6, zero one or more rows and columns of
301 * the matrix to test that INFO is returned correctly.
302 *
303  IF( zerot ) THEN
304  IF( imat.EQ.3 ) THEN
305  izero = 1
306  ELSE IF( imat.EQ.4 ) THEN
307  izero = n
308  ELSE
309  izero = n / 2 + 1
310  END IF
311 *
312  IF( imat.LT.6 ) THEN
313 *
314 * Set row and column IZERO to zero.
315 *
316  IF( iuplo.EQ.1 ) THEN
317  ioff = ( izero-1 )*lda
318  DO 20 i = 1, izero - 1
319  a( ioff+i ) = zero
320  20 CONTINUE
321  ioff = ioff + izero
322  DO 30 i = izero, n
323  a( ioff ) = zero
324  ioff = ioff + lda
325  30 CONTINUE
326  ELSE
327  ioff = izero
328  DO 40 i = 1, izero - 1
329  a( ioff ) = zero
330  ioff = ioff + lda
331  40 CONTINUE
332  ioff = ioff - izero
333  DO 50 i = izero, n
334  a( ioff+i ) = zero
335  50 CONTINUE
336  END IF
337  ELSE
338  IF( iuplo.EQ.1 ) THEN
339 *
340 * Set the first IZERO rows to zero.
341 *
342  ioff = 0
343  DO 70 j = 1, n
344  i2 = min( j, izero )
345  DO 60 i = 1, i2
346  a( ioff+i ) = zero
347  60 CONTINUE
348  ioff = ioff + lda
349  70 CONTINUE
350  ELSE
351 *
352 * Set the last IZERO rows to zero.
353 *
354  ioff = 0
355  DO 90 j = 1, n
356  i1 = max( j, izero )
357  DO 80 i = i1, n
358  a( ioff+i ) = zero
359  80 CONTINUE
360  ioff = ioff + lda
361  90 CONTINUE
362  END IF
363  END IF
364  ELSE
365  izero = 0
366  END IF
367  ELSE
368 *
369 * IMAT = NTYPES: Use a special block diagonal matrix to
370 * test alternate code for the 2-by-2 blocks.
371 *
372  CALL clatsy( uplo, n, a, lda, iseed )
373  END IF
374 *
375  DO 150 ifact = 1, nfact
376 *
377 * Do first for FACT = 'F', then for other values.
378 *
379  fact = facts( ifact )
380 *
381 * Compute the condition number for comparison with
382 * the value returned by CSYSVX.
383 *
384  IF( zerot ) THEN
385  IF( ifact.EQ.1 )
386  \$ GO TO 150
387  rcondc = zero
388 *
389  ELSE IF( ifact.EQ.1 ) THEN
390 *
391 * Compute the 1-norm of A.
392 *
393  anorm = clansy( '1', uplo, n, a, lda, rwork )
394 *
395 * Factor the matrix A.
396 *
397  CALL clacpy( uplo, n, n, a, lda, afac, lda )
398  CALL csytrf( uplo, n, afac, lda, iwork, work,
399  \$ lwork, info )
400 *
401 * Compute inv(A) and take its norm.
402 *
403  CALL clacpy( uplo, n, n, afac, lda, ainv, lda )
404  lwork = (n+nb+1)*(nb+3)
405  CALL csytri2( uplo, n, ainv, lda, iwork, work,
406  \$ lwork, info )
407  ainvnm = clansy( '1', uplo, n, ainv, lda, rwork )
408 *
409 * Compute the 1-norm condition number of A.
410 *
411  IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
412  rcondc = one
413  ELSE
414  rcondc = ( one / anorm ) / ainvnm
415  END IF
416  END IF
417 *
418 * Form an exact solution and set the right hand side.
419 *
420  srnamt = 'CLARHS'
421  CALL clarhs( path, xtype, uplo, ' ', n, n, kl, ku,
422  \$ nrhs, a, lda, xact, lda, b, lda, iseed,
423  \$ info )
424  xtype = 'C'
425 *
426 * --- Test CSYSV ---
427 *
428  IF( ifact.EQ.2 ) THEN
429  CALL clacpy( uplo, n, n, a, lda, afac, lda )
430  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
431 *
432 * Factor the matrix and solve the system using CSYSV.
433 *
434  srnamt = 'CSYSV '
435  CALL csysv( uplo, n, nrhs, afac, lda, iwork, x,
436  \$ lda, work, lwork, info )
437 *
438 * Adjust the expected value of INFO to account for
439 * pivoting.
440 *
441  k = izero
442  IF( k.GT.0 ) THEN
443  100 CONTINUE
444  IF( iwork( k ).LT.0 ) THEN
445  IF( iwork( k ).NE.-k ) THEN
446  k = -iwork( k )
447  GO TO 100
448  END IF
449  ELSE IF( iwork( k ).NE.k ) THEN
450  k = iwork( k )
451  GO TO 100
452  END IF
453  END IF
454 *
455 * Check error code from CSYSV .
456 *
457  IF( info.NE.k ) THEN
458  CALL alaerh( path, 'CSYSV ', info, k, uplo, n,
459  \$ n, -1, -1, nrhs, imat, nfail,
460  \$ nerrs, nout )
461  GO TO 120
462  ELSE IF( info.NE.0 ) THEN
463  GO TO 120
464  END IF
465 *
466 * Reconstruct matrix from factors and compute
467 * residual.
468 *
469  CALL csyt01( uplo, n, a, lda, afac, lda, iwork,
470  \$ ainv, lda, rwork, result( 1 ) )
471 *
472 * Compute residual of the computed solution.
473 *
474  CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
475  CALL csyt02( uplo, n, nrhs, a, lda, x, lda, work,
476  \$ lda, rwork, result( 2 ) )
477 *
478 * Check solution from generated exact solution.
479 *
480  CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
481  \$ result( 3 ) )
482  nt = 3
483 *
484 * Print information about the tests that did not pass
485 * the threshold.
486 *
487  DO 110 k = 1, nt
488  IF( result( k ).GE.thresh ) THEN
489  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
490  \$ CALL aladhd( nout, path )
491  WRITE( nout, fmt = 9999 )'CSYSV ', uplo, n,
492  \$ imat, k, result( k )
493  nfail = nfail + 1
494  END IF
495  110 CONTINUE
496  nrun = nrun + nt
497  120 CONTINUE
498  END IF
499 *
500 * --- Test CSYSVX ---
501 *
502  IF( ifact.EQ.2 )
503  \$ CALL claset( uplo, n, n, cmplx( zero ),
504  \$ cmplx( zero ), afac, lda )
505  CALL claset( 'Full', n, nrhs, cmplx( zero ),
506  \$ cmplx( zero ), x, lda )
507 *
508 * Solve the system and compute the condition number and
509 * error bounds using CSYSVX.
510 *
511  srnamt = 'CSYSVX'
512  CALL csysvx( fact, uplo, n, nrhs, a, lda, afac, lda,
513  \$ iwork, b, lda, x, lda, rcond, rwork,
514  \$ rwork( nrhs+1 ), work, lwork,
515  \$ rwork( 2*nrhs+1 ), info )
516 *
517 * Adjust the expected value of INFO to account for
518 * pivoting.
519 *
520  k = izero
521  IF( k.GT.0 ) THEN
522  130 CONTINUE
523  IF( iwork( k ).LT.0 ) THEN
524  IF( iwork( k ).NE.-k ) THEN
525  k = -iwork( k )
526  GO TO 130
527  END IF
528  ELSE IF( iwork( k ).NE.k ) THEN
529  k = iwork( k )
530  GO TO 130
531  END IF
532  END IF
533 *
534 * Check the error code from CSYSVX.
535 *
536  IF( info.NE.k ) THEN
537  CALL alaerh( path, 'CSYSVX', info, k, fact // uplo,
538  \$ n, n, -1, -1, nrhs, imat, nfail,
539  \$ nerrs, nout )
540  GO TO 150
541  END IF
542 *
543  IF( info.EQ.0 ) THEN
544  IF( ifact.GE.2 ) THEN
545 *
546 * Reconstruct matrix from factors and compute
547 * residual.
548 *
549  CALL csyt01( uplo, n, a, lda, afac, lda, iwork,
550  \$ ainv, lda, rwork( 2*nrhs+1 ),
551  \$ result( 1 ) )
552  k1 = 1
553  ELSE
554  k1 = 2
555  END IF
556 *
557 * Compute residual of the computed solution.
558 *
559  CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
560  CALL csyt02( uplo, n, nrhs, a, lda, x, lda, work,
561  \$ lda, rwork( 2*nrhs+1 ), result( 2 ) )
562 *
563 * Check solution from generated exact solution.
564 *
565  CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
566  \$ result( 3 ) )
567 *
568 * Check the error bounds from iterative refinement.
569 *
570  CALL cpot05( uplo, n, nrhs, a, lda, b, lda, x, lda,
571  \$ xact, lda, rwork, rwork( nrhs+1 ),
572  \$ result( 4 ) )
573  ELSE
574  k1 = 6
575  END IF
576 *
577 * Compare RCOND from CSYSVX with the computed value
578 * in RCONDC.
579 *
580  result( 6 ) = sget06( rcond, rcondc )
581 *
582 * Print information about the tests that did not pass
583 * the threshold.
584 *
585  DO 140 k = k1, 6
586  IF( result( k ).GE.thresh ) THEN
587  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
588  \$ CALL aladhd( nout, path )
589  WRITE( nout, fmt = 9998 )'CSYSVX', fact, uplo,
590  \$ n, imat, k, result( k )
591  nfail = nfail + 1
592  END IF
593  140 CONTINUE
594  nrun = nrun + 7 - k1
595 *
596  150 CONTINUE
597 *
598  160 CONTINUE
599  170 CONTINUE
600  180 CONTINUE
601 *
602 * Print a summary of the results.
603 *
604  CALL alasvm( path, nout, nfail, nrun, nerrs )
605 *
606  9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i2,
607  \$ ', test ', i2, ', ratio =', g12.5 )
608  9998 FORMAT( 1x, a, ', FACT=''', a1, ''', UPLO=''', a1, ''', N =', i5,
609  \$ ', type ', i2, ', test ', i2, ', ratio =', g12.5 )
610  RETURN
611 *
612 * End of CDRVSY
613 *
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:83
subroutine csyt01(UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
CSYT01
Definition: csyt01.f:127
subroutine csyt02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
CSYT02
Definition: csyt02.f:129
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:105
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:334
subroutine claset(UPLO, M, N, ALPHA, BETA, A, LDA)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values...
Definition: claset.f:108
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:75
real function clansy(NORM, UPLO, N, A, LDA, WORK)
CLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex symmetric matrix.
Definition: clansy.f:125
subroutine csytrf(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CSYTRF
Definition: csytrf.f:184
subroutine cget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
CGET04
Definition: cget04.f:104
subroutine cerrvx(PATH, NUNIT)
CERRVX
Definition: cerrvx.f:57
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
Definition: clatb4.f:123
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:149
subroutine csytri2(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CSYTRI2
Definition: csytri2.f:129
subroutine cpot05(UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
CPOT05
Definition: cpot05.f:167
subroutine clatsy(UPLO, N, X, LDX, ISEED)
CLATSY
Definition: clatsy.f:91
subroutine csysv(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO)
CSYSV computes the solution to system of linear equations A * X = B for SY matrices ...
Definition: csysv.f:173
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:211
real function sget06(RCOND, RCONDC)
SGET06
Definition: sget06.f:57
subroutine csysvx(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, LWORK, RWORK, INFO)
CSYSVX computes the solution to system of linear equations A * X = B for SY matrices ...
Definition: csysvx.f:287
Here is the call graph for this function:
Here is the caller graph for this function: