LAPACK  3.8.0 LAPACK: Linear Algebra PACKage

## ◆ cchkhe_rk()

 subroutine cchkhe_rk ( logical, dimension( * ) DOTYPE, integer NN, integer, dimension( * ) NVAL, integer NNB, integer, dimension( * ) NBVAL, integer NNS, integer, dimension( * ) NSVAL, real THRESH, logical TSTERR, integer NMAX, complex, dimension( * ) A, complex, dimension( * ) AFAC, complex, dimension( * ) E, complex, dimension( * ) AINV, complex, dimension( * ) B, complex, dimension( * ) X, complex, dimension( * ) XACT, complex, dimension( * ) WORK, real, dimension( * ) RWORK, integer, dimension( * ) IWORK, integer NOUT )

CCHKHE_RK

Purpose:
``` CCHKHE_RK tests CHETRF_RK, -TRI_3, -TRS_3,
and -CON_3.```
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix dimension N.``` [in] NNB ``` NNB is INTEGER The number of values of NB contained in the vector NBVAL.``` [in] NBVAL ``` NBVAL is INTEGER array, dimension (NBVAL) The values of the blocksize NB.``` [in] NNS ``` NNS is INTEGER The number of values of NRHS contained in the vector NSVAL.``` [in] NSVAL ``` NSVAL is INTEGER array, dimension (NNS) The values of the number of right hand sides NRHS.``` [in] THRESH ``` THRESH is REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for N, used in dimensioning the work arrays.``` [out] A ` A is COMPLEX array, dimension (NMAX*NMAX)` [out] AFAC ` AFAC is COMPLEX array, dimension (NMAX*NMAX)` [out] E ` E is COMPLEX array, dimension (NMAX)` [out] AINV ` AINV is COMPLEX array, dimension (NMAX*NMAX)` [out] B ``` B is COMPLEX array, dimension (NMAX*NSMAX) where NSMAX is the largest entry in NSVAL.``` [out] X ` X is COMPLEX array, dimension (NMAX*NSMAX)` [out] XACT ` XACT is COMPLEX array, dimension (NMAX*NSMAX)` [out] WORK ` WORK is COMPLEX array, dimension (NMAX*max(3,NSMAX))` [out] RWORK ` RWORK is REAL array, dimension (max(NMAX,2*NSMAX)` [out] IWORK ` IWORK is INTEGER array, dimension (2*NMAX)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```
Date
December 2016

Definition at line 179 of file cchkhe_rk.f.

179 *
180 * -- LAPACK test routine (version 3.7.0) --
181 * -- LAPACK is a software package provided by Univ. of Tennessee, --
182 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
183 * December 2016
184 *
185 * .. Scalar Arguments ..
186  LOGICAL tsterr
187  INTEGER nmax, nn, nnb, nns, nout
188  REAL thresh
189 * ..
190 * .. Array Arguments ..
191  LOGICAL dotype( * )
192  INTEGER iwork( * ), nbval( * ), nsval( * ), nval( * )
193  REAL rwork( * )
194  COMPLEX a( * ), afac( * ), ainv( * ), b( * ), e( * ),
195  \$ work( * ), x( * ), xact( * )
196 * ..
197 *
198 * =====================================================================
199 *
200 * .. Parameters ..
201  REAL zero, one
202  parameter( zero = 0.0e+0, one = 1.0e+0 )
203  REAL onehalf
204  parameter( onehalf = 0.5e+0 )
205  REAL eight, sevten
206  parameter( eight = 8.0e+0, sevten = 17.0e+0 )
207  COMPLEX czero
208  parameter( czero = ( 0.0e+0, 0.0e+0 ) )
209  INTEGER ntypes
210  parameter( ntypes = 10 )
211  INTEGER ntests
212  parameter( ntests = 7 )
213 * ..
214 * .. Local Scalars ..
215  LOGICAL trfcon, zerot
216  CHARACTER dist, TYPE, uplo, xtype
217  CHARACTER*3 path, matpath
218  INTEGER i, i1, i2, imat, in, inb, info, ioff, irhs,
219  \$ itemp, itemp2, iuplo, izero, j, k, kl, ku, lda,
220  \$ lwork, mode, n, nb, nerrs, nfail, nimat, nrhs,
221  \$ nrun, nt
222  REAL alpha, anorm, cndnum, const, sing_max,
223  \$ sing_min, rcond, rcondc, stemp
224 * ..
225 * .. Local Arrays ..
226  CHARACTER uplos( 2 )
227  INTEGER iseed( 4 ), iseedy( 4 ), idummy( 1 )
228  REAL result( ntests )
229  COMPLEX block( 2, 2 ), cdummy( 1 )
230 * ..
231 * .. External Functions ..
232  REAL clange, clanhe, sget06
233  EXTERNAL clange, clanhe, sget06
234 * ..
235 * .. External Subroutines ..
236  EXTERNAL alaerh, alahd, alasum, cerrhe, cgesvd, cget04,
239  \$ chetrs_3, xlaenv
240 * ..
241 * .. Intrinsic Functions ..
242  INTRINSIC conjg, max, min, sqrt
243 * ..
244 * .. Scalars in Common ..
245  LOGICAL lerr, ok
246  CHARACTER*32 srnamt
247  INTEGER infot, nunit
248 * ..
249 * .. Common blocks ..
250  COMMON / infoc / infot, nunit, ok, lerr
251  COMMON / srnamc / srnamt
252 * ..
253 * .. Data statements ..
254  DATA iseedy / 1988, 1989, 1990, 1991 /
255  DATA uplos / 'U', 'L' /
256 * ..
257 * .. Executable Statements ..
258 *
259 * Initialize constants and the random number seed.
260 *
261  alpha = ( one+sqrt( sevten ) ) / eight
262 *
263 * Test path
264 *
265  path( 1: 1 ) = 'Complex precision'
266  path( 2: 3 ) = 'HK'
267 *
268 * Path to generate matrices
269 *
270  matpath( 1: 1 ) = 'Complex precision'
271  matpath( 2: 3 ) = 'HE'
272 *
273  nrun = 0
274  nfail = 0
275  nerrs = 0
276  DO 10 i = 1, 4
277  iseed( i ) = iseedy( i )
278  10 CONTINUE
279 *
280 * Test the error exits
281 *
282  IF( tsterr )
283  \$ CALL cerrhe( path, nout )
284  infot = 0
285 *
286 * Set the minimum block size for which the block routine should
287 * be used, which will be later returned by ILAENV
288 *
289  CALL xlaenv( 2, 2 )
290 *
291 * Do for each value of N in NVAL
292 *
293  DO 270 in = 1, nn
294  n = nval( in )
295  lda = max( n, 1 )
296  xtype = 'N'
297  nimat = ntypes
298  IF( n.LE.0 )
299  \$ nimat = 1
300 *
301  izero = 0
302 *
303 * Do for each value of matrix type IMAT
304 *
305  DO 260 imat = 1, nimat
306 *
307 * Do the tests only if DOTYPE( IMAT ) is true.
308 *
309  IF( .NOT.dotype( imat ) )
310  \$ GO TO 260
311 *
312 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
313 *
314  zerot = imat.GE.3 .AND. imat.LE.6
315  IF( zerot .AND. n.LT.imat-2 )
316  \$ GO TO 260
317 *
318 * Do first for UPLO = 'U', then for UPLO = 'L'
319 *
320  DO 250 iuplo = 1, 2
321  uplo = uplos( iuplo )
322 *
323 * Begin generate the test matrix A.
324 *
325 * Set up parameters with CLATB4 for the matrix generator
326 * based on the type of matrix to be generated.
327 *
328  CALL clatb4( matpath, imat, n, n, TYPE, kl, ku, anorm,
329  \$ mode, cndnum, dist )
330 *
331 * Generate a matrix with CLATMS.
332 *
333  srnamt = 'CLATMS'
334  CALL clatms( n, n, dist, iseed, TYPE, rwork, mode,
335  \$ cndnum, anorm, kl, ku, uplo, a, lda,
336  \$ work, info )
337 *
338 * Check error code from CLATMS and handle error.
339 *
340  IF( info.NE.0 ) THEN
341  CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n,
342  \$ -1, -1, -1, imat, nfail, nerrs, nout )
343 *
344 * Skip all tests for this generated matrix
345 *
346  GO TO 250
347  END IF
348 *
349 * For matrix types 3-6, zero one or more rows and
350 * columns of the matrix to test that INFO is returned
351 * correctly.
352 *
353  IF( zerot ) THEN
354  IF( imat.EQ.3 ) THEN
355  izero = 1
356  ELSE IF( imat.EQ.4 ) THEN
357  izero = n
358  ELSE
359  izero = n / 2 + 1
360  END IF
361 *
362  IF( imat.LT.6 ) THEN
363 *
364 * Set row and column IZERO to zero.
365 *
366  IF( iuplo.EQ.1 ) THEN
367  ioff = ( izero-1 )*lda
368  DO 20 i = 1, izero - 1
369  a( ioff+i ) = czero
370  20 CONTINUE
371  ioff = ioff + izero
372  DO 30 i = izero, n
373  a( ioff ) = czero
374  ioff = ioff + lda
375  30 CONTINUE
376  ELSE
377  ioff = izero
378  DO 40 i = 1, izero - 1
379  a( ioff ) = czero
380  ioff = ioff + lda
381  40 CONTINUE
382  ioff = ioff - izero
383  DO 50 i = izero, n
384  a( ioff+i ) = czero
385  50 CONTINUE
386  END IF
387  ELSE
388  IF( iuplo.EQ.1 ) THEN
389 *
390 * Set the first IZERO rows and columns to zero.
391 *
392  ioff = 0
393  DO 70 j = 1, n
394  i2 = min( j, izero )
395  DO 60 i = 1, i2
396  a( ioff+i ) = czero
397  60 CONTINUE
398  ioff = ioff + lda
399  70 CONTINUE
400  ELSE
401 *
402 * Set the last IZERO rows and columns to zero.
403 *
404  ioff = 0
405  DO 90 j = 1, n
406  i1 = max( j, izero )
407  DO 80 i = i1, n
408  a( ioff+i ) = czero
409  80 CONTINUE
410  ioff = ioff + lda
411  90 CONTINUE
412  END IF
413  END IF
414  ELSE
415  izero = 0
416  END IF
417 *
418 * End generate the test matrix A.
419 *
420 *
421 * Do for each value of NB in NBVAL
422 *
423  DO 240 inb = 1, nnb
424 *
425 * Set the optimal blocksize, which will be later
426 * returned by ILAENV.
427 *
428  nb = nbval( inb )
429  CALL xlaenv( 1, nb )
430 *
431 * Copy the test matrix A into matrix AFAC which
432 * will be factorized in place. This is needed to
433 * preserve the test matrix A for subsequent tests.
434 *
435  CALL clacpy( uplo, n, n, a, lda, afac, lda )
436 *
437 * Compute the L*D*L**T or U*D*U**T factorization of the
438 * matrix. IWORK stores details of the interchanges and
439 * the block structure of D. AINV is a work array for
440 * block factorization, LWORK is the length of AINV.
441 *
442  lwork = max( 2, nb )*lda
443  srnamt = 'CHETRF_RK'
444  CALL chetrf_rk( uplo, n, afac, lda, e, iwork, ainv,
445  \$ lwork, info )
446 *
447 * Adjust the expected value of INFO to account for
448 * pivoting.
449 *
450  k = izero
451  IF( k.GT.0 ) THEN
452  100 CONTINUE
453  IF( iwork( k ).LT.0 ) THEN
454  IF( iwork( k ).NE.-k ) THEN
455  k = -iwork( k )
456  GO TO 100
457  END IF
458  ELSE IF( iwork( k ).NE.k ) THEN
459  k = iwork( k )
460  GO TO 100
461  END IF
462  END IF
463 *
464 * Check error code from CHETRF_RK and handle error.
465 *
466  IF( info.NE.k)
467  \$ CALL alaerh( path, 'CHETRF_RK', info, k,
468  \$ uplo, n, n, -1, -1, nb, imat,
469  \$ nfail, nerrs, nout )
470 *
471 * Set the condition estimate flag if the INFO is not 0.
472 *
473  IF( info.NE.0 ) THEN
474  trfcon = .true.
475  ELSE
476  trfcon = .false.
477  END IF
478 *
479 *+ TEST 1
480 * Reconstruct matrix from factors and compute residual.
481 *
482  CALL chet01_3( uplo, n, a, lda, afac, lda, e, iwork,
483  \$ ainv, lda, rwork, result( 1 ) )
484  nt = 1
485 *
486 *+ TEST 2
487 * Form the inverse and compute the residual,
488 * if the factorization was competed without INFO > 0
489 * (i.e. there is no zero rows and columns).
490 * Do it only for the first block size.
491 *
492  IF( inb.EQ.1 .AND. .NOT.trfcon ) THEN
493  CALL clacpy( uplo, n, n, afac, lda, ainv, lda )
494  srnamt = 'CHETRI_3'
495 *
496 * Another reason that we need to compute the invesrse
497 * is that CPOT03 produces RCONDC which is used later
498 * in TEST6 and TEST7.
499 *
500  lwork = (n+nb+1)*(nb+3)
501  CALL chetri_3( uplo, n, ainv, lda, e, iwork, work,
502  \$ lwork, info )
503 *
504 * Check error code from ZHETRI_3 and handle error.
505 *
506  IF( info.NE.0 )
507  \$ CALL alaerh( path, 'CHETRI_3', info, -1,
508  \$ uplo, n, n, -1, -1, -1, imat,
509  \$ nfail, nerrs, nout )
510 *
511 * Compute the residual for a Hermitian matrix times
512 * its inverse.
513 *
514  CALL cpot03( uplo, n, a, lda, ainv, lda, work, lda,
515  \$ rwork, rcondc, result( 2 ) )
516  nt = 2
517  END IF
518 *
519 * Print information about the tests that did not pass
520 * the threshold.
521 *
522  DO 110 k = 1, nt
523  IF( result( k ).GE.thresh ) THEN
524  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
525  \$ CALL alahd( nout, path )
526  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
527  \$ result( k )
528  nfail = nfail + 1
529  END IF
530  110 CONTINUE
531  nrun = nrun + nt
532 *
533 *+ TEST 3
534 * Compute largest element in U or L
535 *
536  result( 3 ) = zero
537  stemp = zero
538 *
539  const = ( ( alpha**2-one ) / ( alpha**2-onehalf ) ) /
540  \$ ( one-alpha )
541 *
542  IF( iuplo.EQ.1 ) THEN
543 *
544 * Compute largest element in U
545 *
546  k = n
547  120 CONTINUE
548  IF( k.LE.1 )
549  \$ GO TO 130
550 *
551  IF( iwork( k ).GT.zero ) THEN
552 *
553 * Get max absolute value from elements
554 * in column k in U
555 *
556  stemp = clange( 'M', k-1, 1,
557  \$ afac( ( k-1 )*lda+1 ), lda, rwork )
558  ELSE
559 *
560 * Get max absolute value from elements
561 * in columns k and k-1 in U
562 *
563  stemp = clange( 'M', k-2, 2,
564  \$ afac( ( k-2 )*lda+1 ), lda, rwork )
565  k = k - 1
566 *
567  END IF
568 *
569 * STEMP should be bounded by CONST
570 *
571  stemp = stemp - const + thresh
572  IF( stemp.GT.result( 3 ) )
573  \$ result( 3 ) = stemp
574 *
575  k = k - 1
576 *
577  GO TO 120
578  130 CONTINUE
579 *
580  ELSE
581 *
582 * Compute largest element in L
583 *
584  k = 1
585  140 CONTINUE
586  IF( k.GE.n )
587  \$ GO TO 150
588 *
589  IF( iwork( k ).GT.zero ) THEN
590 *
591 * Get max absolute value from elements
592 * in column k in L
593 *
594  stemp = clange( 'M', n-k, 1,
595  \$ afac( ( k-1 )*lda+k+1 ), lda, rwork )
596  ELSE
597 *
598 * Get max absolute value from elements
599 * in columns k and k+1 in L
600 *
601  stemp = clange( 'M', n-k-1, 2,
602  \$ afac( ( k-1 )*lda+k+2 ), lda, rwork )
603  k = k + 1
604 *
605  END IF
606 *
607 * STEMP should be bounded by CONST
608 *
609  stemp = stemp - const + thresh
610  IF( stemp.GT.result( 3 ) )
611  \$ result( 3 ) = stemp
612 *
613  k = k + 1
614 *
615  GO TO 140
616  150 CONTINUE
617  END IF
618 *
619 *
620 *+ TEST 4
621 * Compute largest 2-Norm (condition number)
622 * of 2-by-2 diag blocks
623 *
624  result( 4 ) = zero
625  stemp = zero
626 *
627  const = ( ( alpha**2-one ) / ( alpha**2-onehalf ) )*
628  \$ ( ( one + alpha ) / ( one - alpha ) )
629  CALL clacpy( uplo, n, n, afac, lda, ainv, lda )
630 *
631  IF( iuplo.EQ.1 ) THEN
632 *
633 * Loop backward for UPLO = 'U'
634 *
635  k = n
636  160 CONTINUE
637  IF( k.LE.1 )
638  \$ GO TO 170
639 *
640  IF( iwork( k ).LT.zero ) THEN
641 *
642 * Get the two singular values
643 * (real and non-negative) of a 2-by-2 block,
644 * store them in RWORK array
645 *
646  block( 1, 1 ) = afac( ( k-2 )*lda+k-1 )
647  block( 1, 2 ) = e( k )
648  block( 2, 1 ) = conjg( block( 1, 2 ) )
649  block( 2, 2 ) = afac( (k-1)*lda+k )
650 *
651  CALL cgesvd( 'N', 'N', 2, 2, block, 2, rwork,
652  \$ cdummy, 1, cdummy, 1,
653  \$ work, 6, rwork( 3 ), info )
654 *
655 *
656  sing_max = rwork( 1 )
657  sing_min = rwork( 2 )
658 *
659  stemp = sing_max / sing_min
660 *
661 * STEMP should be bounded by CONST
662 *
663  stemp = stemp - const + thresh
664  IF( stemp.GT.result( 4 ) )
665  \$ result( 4 ) = stemp
666  k = k - 1
667 *
668  END IF
669 *
670  k = k - 1
671 *
672  GO TO 160
673  170 CONTINUE
674 *
675  ELSE
676 *
677 * Loop forward for UPLO = 'L'
678 *
679  k = 1
680  180 CONTINUE
681  IF( k.GE.n )
682  \$ GO TO 190
683 *
684  IF( iwork( k ).LT.zero ) THEN
685 *
686 * Get the two singular values
687 * (real and non-negative) of a 2-by-2 block,
688 * store them in RWORK array
689 *
690  block( 1, 1 ) = afac( ( k-1 )*lda+k )
691  block( 2, 1 ) = e( k )
692  block( 1, 2 ) = conjg( block( 2, 1 ) )
693  block( 2, 2 ) = afac( k*lda+k+1 )
694 *
695  CALL cgesvd( 'N', 'N', 2, 2, block, 2, rwork,
696  \$ cdummy, 1, cdummy, 1,
697  \$ work, 6, rwork(3), info )
698 *
699  sing_max = rwork( 1 )
700  sing_min = rwork( 2 )
701 *
702  stemp = sing_max / sing_min
703 *
704 * STEMP should be bounded by CONST
705 *
706  stemp = stemp - const + thresh
707  IF( stemp.GT.result( 4 ) )
708  \$ result( 4 ) = stemp
709  k = k + 1
710 *
711  END IF
712 *
713  k = k + 1
714 *
715  GO TO 180
716  190 CONTINUE
717  END IF
718 *
719 * Print information about the tests that did not pass
720 * the threshold.
721 *
722  DO 200 k = 3, 4
723  IF( result( k ).GE.thresh ) THEN
724  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
725  \$ CALL alahd( nout, path )
726  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
727  \$ result( k )
728  nfail = nfail + 1
729  END IF
730  200 CONTINUE
731  nrun = nrun + 2
732 *
733 * Skip the other tests if this is not the first block
734 * size.
735 *
736  IF( inb.GT.1 )
737  \$ GO TO 240
738 *
739 * Do only the condition estimate if INFO is not 0.
740 *
741  IF( trfcon ) THEN
742  rcondc = zero
743  GO TO 230
744  END IF
745 *
746 * Do for each value of NRHS in NSVAL.
747 *
748  DO 220 irhs = 1, nns
749  nrhs = nsval( irhs )
750 *
751 * Begin loop over NRHS values
752 *
753 *
754 *+ TEST 5 ( Using TRS_3)
755 * Solve and compute residual for A * X = B.
756 *
757 * Choose a set of NRHS random solution vectors
758 * stored in XACT and set up the right hand side B
759 *
760  srnamt = 'CLARHS'
761  CALL clarhs( matpath, xtype, uplo, ' ', n, n,
762  \$ kl, ku, nrhs, a, lda, xact, lda,
763  \$ b, lda, iseed, info )
764  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
765 *
766  srnamt = 'CHETRS_3'
767  CALL chetrs_3( uplo, n, nrhs, afac, lda, e, iwork,
768  \$ x, lda, info )
769 *
770 * Check error code from CHETRS_3 and handle error.
771 *
772  IF( info.NE.0 )
773  \$ CALL alaerh( path, 'CHETRS_3', info, 0,
774  \$ uplo, n, n, -1, -1, nrhs, imat,
775  \$ nfail, nerrs, nout )
776 *
777  CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
778 *
779 * Compute the residual for the solution
780 *
781  CALL cpot02( uplo, n, nrhs, a, lda, x, lda, work,
782  \$ lda, rwork, result( 5 ) )
783 *
784 *+ TEST 6
785 * Check solution from generated exact solution.
786 *
787  CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
788  \$ result( 6 ) )
789 *
790 * Print information about the tests that did not pass
791 * the threshold.
792 *
793  DO 210 k = 5, 6
794  IF( result( k ).GE.thresh ) THEN
795  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
796  \$ CALL alahd( nout, path )
797  WRITE( nout, fmt = 9998 )uplo, n, nrhs,
798  \$ imat, k, result( k )
799  nfail = nfail + 1
800  END IF
801  210 CONTINUE
802  nrun = nrun + 2
803 *
804 * End do for each value of NRHS in NSVAL.
805 *
806  220 CONTINUE
807 *
808 *+ TEST 7
809 * Get an estimate of RCOND = 1/CNDNUM.
810 *
811  230 CONTINUE
812  anorm = clanhe( '1', uplo, n, a, lda, rwork )
813  srnamt = 'CHECON_3'
814  CALL checon_3( uplo, n, afac, lda, e, iwork, anorm,
815  \$ rcond, work, info )
816 *
817 * Check error code from CHECON_3 and handle error.
818 *
819  IF( info.NE.0 )
820  \$ CALL alaerh( path, 'CHECON_3', info, 0,
821  \$ uplo, n, n, -1, -1, -1, imat,
822  \$ nfail, nerrs, nout )
823 *
824 * Compute the test ratio to compare values of RCOND
825 *
826  result( 7 ) = sget06( rcond, rcondc )
827 *
828 * Print information about the tests that did not pass
829 * the threshold.
830 *
831  IF( result( 7 ).GE.thresh ) THEN
832  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
833  \$ CALL alahd( nout, path )
834  WRITE( nout, fmt = 9997 )uplo, n, imat, 7,
835  \$ result( 7 )
836  nfail = nfail + 1
837  END IF
838  nrun = nrun + 1
839  240 CONTINUE
840 *
841  250 CONTINUE
842  260 CONTINUE
843  270 CONTINUE
844 *
845 * Print a summary of the results.
846 *
847  CALL alasum( path, nout, nfail, nrun, nerrs )
848 *
849  9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
850  \$ i2, ', test ', i2, ', ratio =', g12.5 )
851  9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
852  \$ i2, ', test ', i2, ', ratio =', g12.5 )
853  9997 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ',', 10x, ' type ', i2,
854  \$ ', test ', i2, ', ratio =', g12.5 )
855  RETURN
856 *
857 * End of CCHKHE_RK
858 *
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:83
subroutine chetrs_3(UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB, INFO)
CHETRS_3
Definition: chetrs_3.f:167
subroutine cerrhe(PATH, NUNIT)
CERRHE
Definition: cerrhe.f:57
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:105
subroutine chet01_3(UPLO, N, A, LDA, AFAC, LDAFAC, E, IPIV, C, LDC, RWORK, RESID)
CHET01_3
Definition: chet01_3.f:143
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:334
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:75
subroutine chetri_3(UPLO, N, A, LDA, E, IPIV, WORK, LWORK, INFO)
CHETRI_3
Definition: chetri_3.f:172
subroutine cpot03(UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK, RCOND, RESID)
CPOT03
Definition: cpot03.f:128
subroutine cget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
CGET04
Definition: cget04.f:104
subroutine cpot02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
CPOT02
Definition: cpot02.f:129
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
Definition: clatb4.f:123
real function clanhe(NORM, UPLO, N, A, LDA, WORK)
CLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix.
Definition: clanhe.f:126
subroutine cgesvd(JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK, LWORK, RWORK, INFO)
CGESVD computes the singular value decomposition (SVD) for GE matrices
Definition: cgesvd.f:216
subroutine chetrf_rk(UPLO, N, A, LDA, E, IPIV, WORK, LWORK, INFO)
CHETRF_RK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch...
Definition: chetrf_rk.f:261
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:149
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:211
subroutine checon_3(UPLO, N, A, LDA, E, IPIV, ANORM, RCOND, WORK, INFO)
CHECON_3
Definition: checon_3.f:173
real function clange(NORM, M, N, A, LDA, WORK)
CLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: clange.f:117
real function sget06(RCOND, RCONDC)
SGET06
Definition: sget06.f:57
Here is the call graph for this function:
Here is the caller graph for this function: