LAPACK  3.8.0
LAPACK: Linear Algebra PACKage
clarfb.f
Go to the documentation of this file.
1 *> \brief \b CLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download CLARFB + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarfb.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarfb.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarfb.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE CLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
22 * T, LDT, C, LDC, WORK, LDWORK )
23 *
24 * .. Scalar Arguments ..
25 * CHARACTER DIRECT, SIDE, STOREV, TRANS
26 * INTEGER K, LDC, LDT, LDV, LDWORK, M, N
27 * ..
28 * .. Array Arguments ..
29 * COMPLEX C( LDC, * ), T( LDT, * ), V( LDV, * ),
30 * $ WORK( LDWORK, * )
31 * ..
32 *
33 *
34 *> \par Purpose:
35 * =============
36 *>
37 *> \verbatim
38 *>
39 *> CLARFB applies a complex block reflector H or its transpose H**H to a
40 *> complex M-by-N matrix C, from either the left or the right.
41 *> \endverbatim
42 *
43 * Arguments:
44 * ==========
45 *
46 *> \param[in] SIDE
47 *> \verbatim
48 *> SIDE is CHARACTER*1
49 *> = 'L': apply H or H**H from the Left
50 *> = 'R': apply H or H**H from the Right
51 *> \endverbatim
52 *>
53 *> \param[in] TRANS
54 *> \verbatim
55 *> TRANS is CHARACTER*1
56 *> = 'N': apply H (No transpose)
57 *> = 'C': apply H**H (Conjugate transpose)
58 *> \endverbatim
59 *>
60 *> \param[in] DIRECT
61 *> \verbatim
62 *> DIRECT is CHARACTER*1
63 *> Indicates how H is formed from a product of elementary
64 *> reflectors
65 *> = 'F': H = H(1) H(2) . . . H(k) (Forward)
66 *> = 'B': H = H(k) . . . H(2) H(1) (Backward)
67 *> \endverbatim
68 *>
69 *> \param[in] STOREV
70 *> \verbatim
71 *> STOREV is CHARACTER*1
72 *> Indicates how the vectors which define the elementary
73 *> reflectors are stored:
74 *> = 'C': Columnwise
75 *> = 'R': Rowwise
76 *> \endverbatim
77 *>
78 *> \param[in] M
79 *> \verbatim
80 *> M is INTEGER
81 *> The number of rows of the matrix C.
82 *> \endverbatim
83 *>
84 *> \param[in] N
85 *> \verbatim
86 *> N is INTEGER
87 *> The number of columns of the matrix C.
88 *> \endverbatim
89 *>
90 *> \param[in] K
91 *> \verbatim
92 *> K is INTEGER
93 *> The order of the matrix T (= the number of elementary
94 *> reflectors whose product defines the block reflector).
95 *> \endverbatim
96 *>
97 *> \param[in] V
98 *> \verbatim
99 *> V is COMPLEX array, dimension
100 *> (LDV,K) if STOREV = 'C'
101 *> (LDV,M) if STOREV = 'R' and SIDE = 'L'
102 *> (LDV,N) if STOREV = 'R' and SIDE = 'R'
103 *> The matrix V. See Further Details.
104 *> \endverbatim
105 *>
106 *> \param[in] LDV
107 *> \verbatim
108 *> LDV is INTEGER
109 *> The leading dimension of the array V.
110 *> If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
111 *> if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
112 *> if STOREV = 'R', LDV >= K.
113 *> \endverbatim
114 *>
115 *> \param[in] T
116 *> \verbatim
117 *> T is COMPLEX array, dimension (LDT,K)
118 *> The triangular K-by-K matrix T in the representation of the
119 *> block reflector.
120 *> \endverbatim
121 *>
122 *> \param[in] LDT
123 *> \verbatim
124 *> LDT is INTEGER
125 *> The leading dimension of the array T. LDT >= K.
126 *> \endverbatim
127 *>
128 *> \param[in,out] C
129 *> \verbatim
130 *> C is COMPLEX array, dimension (LDC,N)
131 *> On entry, the M-by-N matrix C.
132 *> On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H.
133 *> \endverbatim
134 *>
135 *> \param[in] LDC
136 *> \verbatim
137 *> LDC is INTEGER
138 *> The leading dimension of the array C. LDC >= max(1,M).
139 *> \endverbatim
140 *>
141 *> \param[out] WORK
142 *> \verbatim
143 *> WORK is COMPLEX array, dimension (LDWORK,K)
144 *> \endverbatim
145 *>
146 *> \param[in] LDWORK
147 *> \verbatim
148 *> LDWORK is INTEGER
149 *> The leading dimension of the array WORK.
150 *> If SIDE = 'L', LDWORK >= max(1,N);
151 *> if SIDE = 'R', LDWORK >= max(1,M).
152 *> \endverbatim
153 *
154 * Authors:
155 * ========
156 *
157 *> \author Univ. of Tennessee
158 *> \author Univ. of California Berkeley
159 *> \author Univ. of Colorado Denver
160 *> \author NAG Ltd.
161 *
162 *> \date June 2013
163 *
164 *> \ingroup complexOTHERauxiliary
165 *
166 *> \par Further Details:
167 * =====================
168 *>
169 *> \verbatim
170 *>
171 *> The shape of the matrix V and the storage of the vectors which define
172 *> the H(i) is best illustrated by the following example with n = 5 and
173 *> k = 3. The elements equal to 1 are not stored; the corresponding
174 *> array elements are modified but restored on exit. The rest of the
175 *> array is not used.
176 *>
177 *> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
178 *>
179 *> V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
180 *> ( v1 1 ) ( 1 v2 v2 v2 )
181 *> ( v1 v2 1 ) ( 1 v3 v3 )
182 *> ( v1 v2 v3 )
183 *> ( v1 v2 v3 )
184 *>
185 *> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
186 *>
187 *> V = ( v1 v2 v3 ) V = ( v1 v1 1 )
188 *> ( v1 v2 v3 ) ( v2 v2 v2 1 )
189 *> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
190 *> ( 1 v3 )
191 *> ( 1 )
192 *> \endverbatim
193 *>
194 * =====================================================================
195  SUBROUTINE clarfb( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
196  $ T, LDT, C, LDC, WORK, LDWORK )
197 *
198 * -- LAPACK auxiliary routine (version 3.7.0) --
199 * -- LAPACK is a software package provided by Univ. of Tennessee, --
200 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
201 * June 2013
202 *
203 * .. Scalar Arguments ..
204  CHARACTER DIRECT, SIDE, STOREV, TRANS
205  INTEGER K, LDC, LDT, LDV, LDWORK, M, N
206 * ..
207 * .. Array Arguments ..
208  COMPLEX C( ldc, * ), T( ldt, * ), V( ldv, * ),
209  $ work( ldwork, * )
210 * ..
211 *
212 * =====================================================================
213 *
214 * .. Parameters ..
215  COMPLEX ONE
216  parameter( one = ( 1.0e+0, 0.0e+0 ) )
217 * ..
218 * .. Local Scalars ..
219  CHARACTER TRANST
220  INTEGER I, J
221 * ..
222 * .. External Functions ..
223  LOGICAL LSAME
224  EXTERNAL lsame
225 * ..
226 * .. External Subroutines ..
227  EXTERNAL ccopy, cgemm, clacgv, ctrmm
228 * ..
229 * .. Intrinsic Functions ..
230  INTRINSIC conjg
231 * ..
232 * .. Executable Statements ..
233 *
234 * Quick return if possible
235 *
236  IF( m.LE.0 .OR. n.LE.0 )
237  $ RETURN
238 *
239  IF( lsame( trans, 'N' ) ) THEN
240  transt = 'C'
241  ELSE
242  transt = 'N'
243  END IF
244 *
245  IF( lsame( storev, 'C' ) ) THEN
246 *
247  IF( lsame( direct, 'F' ) ) THEN
248 *
249 * Let V = ( V1 ) (first K rows)
250 * ( V2 )
251 * where V1 is unit lower triangular.
252 *
253  IF( lsame( side, 'L' ) ) THEN
254 *
255 * Form H * C or H**H * C where C = ( C1 )
256 * ( C2 )
257 *
258 * W := C**H * V = (C1**H * V1 + C2**H * V2) (stored in WORK)
259 *
260 * W := C1**H
261 *
262  DO 10 j = 1, k
263  CALL ccopy( n, c( j, 1 ), ldc, work( 1, j ), 1 )
264  CALL clacgv( n, work( 1, j ), 1 )
265  10 CONTINUE
266 *
267 * W := W * V1
268 *
269  CALL ctrmm( 'Right', 'Lower', 'No transpose', 'Unit', n,
270  $ k, one, v, ldv, work, ldwork )
271  IF( m.GT.k ) THEN
272 *
273 * W := W + C2**H *V2
274 *
275  CALL cgemm( 'Conjugate transpose', 'No transpose', n,
276  $ k, m-k, one, c( k+1, 1 ), ldc,
277  $ v( k+1, 1 ), ldv, one, work, ldwork )
278  END IF
279 *
280 * W := W * T**H or W * T
281 *
282  CALL ctrmm( 'Right', 'Upper', transt, 'Non-unit', n, k,
283  $ one, t, ldt, work, ldwork )
284 *
285 * C := C - V * W**H
286 *
287  IF( m.GT.k ) THEN
288 *
289 * C2 := C2 - V2 * W**H
290 *
291  CALL cgemm( 'No transpose', 'Conjugate transpose',
292  $ m-k, n, k, -one, v( k+1, 1 ), ldv, work,
293  $ ldwork, one, c( k+1, 1 ), ldc )
294  END IF
295 *
296 * W := W * V1**H
297 *
298  CALL ctrmm( 'Right', 'Lower', 'Conjugate transpose',
299  $ 'Unit', n, k, one, v, ldv, work, ldwork )
300 *
301 * C1 := C1 - W**H
302 *
303  DO 30 j = 1, k
304  DO 20 i = 1, n
305  c( j, i ) = c( j, i ) - conjg( work( i, j ) )
306  20 CONTINUE
307  30 CONTINUE
308 *
309  ELSE IF( lsame( side, 'R' ) ) THEN
310 *
311 * Form C * H or C * H**H where C = ( C1 C2 )
312 *
313 * W := C * V = (C1*V1 + C2*V2) (stored in WORK)
314 *
315 * W := C1
316 *
317  DO 40 j = 1, k
318  CALL ccopy( m, c( 1, j ), 1, work( 1, j ), 1 )
319  40 CONTINUE
320 *
321 * W := W * V1
322 *
323  CALL ctrmm( 'Right', 'Lower', 'No transpose', 'Unit', m,
324  $ k, one, v, ldv, work, ldwork )
325  IF( n.GT.k ) THEN
326 *
327 * W := W + C2 * V2
328 *
329  CALL cgemm( 'No transpose', 'No transpose', m, k, n-k,
330  $ one, c( 1, k+1 ), ldc, v( k+1, 1 ), ldv,
331  $ one, work, ldwork )
332  END IF
333 *
334 * W := W * T or W * T**H
335 *
336  CALL ctrmm( 'Right', 'Upper', trans, 'Non-unit', m, k,
337  $ one, t, ldt, work, ldwork )
338 *
339 * C := C - W * V**H
340 *
341  IF( n.GT.k ) THEN
342 *
343 * C2 := C2 - W * V2**H
344 *
345  CALL cgemm( 'No transpose', 'Conjugate transpose', m,
346  $ n-k, k, -one, work, ldwork, v( k+1, 1 ),
347  $ ldv, one, c( 1, k+1 ), ldc )
348  END IF
349 *
350 * W := W * V1**H
351 *
352  CALL ctrmm( 'Right', 'Lower', 'Conjugate transpose',
353  $ 'Unit', m, k, one, v, ldv, work, ldwork )
354 *
355 * C1 := C1 - W
356 *
357  DO 60 j = 1, k
358  DO 50 i = 1, m
359  c( i, j ) = c( i, j ) - work( i, j )
360  50 CONTINUE
361  60 CONTINUE
362  END IF
363 *
364  ELSE
365 *
366 * Let V = ( V1 )
367 * ( V2 ) (last K rows)
368 * where V2 is unit upper triangular.
369 *
370  IF( lsame( side, 'L' ) ) THEN
371 *
372 * Form H * C or H**H * C where C = ( C1 )
373 * ( C2 )
374 *
375 * W := C**H * V = (C1**H * V1 + C2**H * V2) (stored in WORK)
376 *
377 * W := C2**H
378 *
379  DO 70 j = 1, k
380  CALL ccopy( n, c( m-k+j, 1 ), ldc, work( 1, j ), 1 )
381  CALL clacgv( n, work( 1, j ), 1 )
382  70 CONTINUE
383 *
384 * W := W * V2
385 *
386  CALL ctrmm( 'Right', 'Upper', 'No transpose', 'Unit', n,
387  $ k, one, v( m-k+1, 1 ), ldv, work, ldwork )
388  IF( m.GT.k ) THEN
389 *
390 * W := W + C1**H * V1
391 *
392  CALL cgemm( 'Conjugate transpose', 'No transpose', n,
393  $ k, m-k, one, c, ldc, v, ldv, one, work,
394  $ ldwork )
395  END IF
396 *
397 * W := W * T**H or W * T
398 *
399  CALL ctrmm( 'Right', 'Lower', transt, 'Non-unit', n, k,
400  $ one, t, ldt, work, ldwork )
401 *
402 * C := C - V * W**H
403 *
404  IF( m.GT.k ) THEN
405 *
406 * C1 := C1 - V1 * W**H
407 *
408  CALL cgemm( 'No transpose', 'Conjugate transpose',
409  $ m-k, n, k, -one, v, ldv, work, ldwork,
410  $ one, c, ldc )
411  END IF
412 *
413 * W := W * V2**H
414 *
415  CALL ctrmm( 'Right', 'Upper', 'Conjugate transpose',
416  $ 'Unit', n, k, one, v( m-k+1, 1 ), ldv, work,
417  $ ldwork )
418 *
419 * C2 := C2 - W**H
420 *
421  DO 90 j = 1, k
422  DO 80 i = 1, n
423  c( m-k+j, i ) = c( m-k+j, i ) -
424  $ conjg( work( i, j ) )
425  80 CONTINUE
426  90 CONTINUE
427 *
428  ELSE IF( lsame( side, 'R' ) ) THEN
429 *
430 * Form C * H or C * H**H where C = ( C1 C2 )
431 *
432 * W := C * V = (C1*V1 + C2*V2) (stored in WORK)
433 *
434 * W := C2
435 *
436  DO 100 j = 1, k
437  CALL ccopy( m, c( 1, n-k+j ), 1, work( 1, j ), 1 )
438  100 CONTINUE
439 *
440 * W := W * V2
441 *
442  CALL ctrmm( 'Right', 'Upper', 'No transpose', 'Unit', m,
443  $ k, one, v( n-k+1, 1 ), ldv, work, ldwork )
444  IF( n.GT.k ) THEN
445 *
446 * W := W + C1 * V1
447 *
448  CALL cgemm( 'No transpose', 'No transpose', m, k, n-k,
449  $ one, c, ldc, v, ldv, one, work, ldwork )
450  END IF
451 *
452 * W := W * T or W * T**H
453 *
454  CALL ctrmm( 'Right', 'Lower', trans, 'Non-unit', m, k,
455  $ one, t, ldt, work, ldwork )
456 *
457 * C := C - W * V**H
458 *
459  IF( n.GT.k ) THEN
460 *
461 * C1 := C1 - W * V1**H
462 *
463  CALL cgemm( 'No transpose', 'Conjugate transpose', m,
464  $ n-k, k, -one, work, ldwork, v, ldv, one,
465  $ c, ldc )
466  END IF
467 *
468 * W := W * V2**H
469 *
470  CALL ctrmm( 'Right', 'Upper', 'Conjugate transpose',
471  $ 'Unit', m, k, one, v( n-k+1, 1 ), ldv, work,
472  $ ldwork )
473 *
474 * C2 := C2 - W
475 *
476  DO 120 j = 1, k
477  DO 110 i = 1, m
478  c( i, n-k+j ) = c( i, n-k+j ) - work( i, j )
479  110 CONTINUE
480  120 CONTINUE
481  END IF
482  END IF
483 *
484  ELSE IF( lsame( storev, 'R' ) ) THEN
485 *
486  IF( lsame( direct, 'F' ) ) THEN
487 *
488 * Let V = ( V1 V2 ) (V1: first K columns)
489 * where V1 is unit upper triangular.
490 *
491  IF( lsame( side, 'L' ) ) THEN
492 *
493 * Form H * C or H**H * C where C = ( C1 )
494 * ( C2 )
495 *
496 * W := C**H * V**H = (C1**H * V1**H + C2**H * V2**H) (stored in WORK)
497 *
498 * W := C1**H
499 *
500  DO 130 j = 1, k
501  CALL ccopy( n, c( j, 1 ), ldc, work( 1, j ), 1 )
502  CALL clacgv( n, work( 1, j ), 1 )
503  130 CONTINUE
504 *
505 * W := W * V1**H
506 *
507  CALL ctrmm( 'Right', 'Upper', 'Conjugate transpose',
508  $ 'Unit', n, k, one, v, ldv, work, ldwork )
509  IF( m.GT.k ) THEN
510 *
511 * W := W + C2**H * V2**H
512 *
513  CALL cgemm( 'Conjugate transpose',
514  $ 'Conjugate transpose', n, k, m-k, one,
515  $ c( k+1, 1 ), ldc, v( 1, k+1 ), ldv, one,
516  $ work, ldwork )
517  END IF
518 *
519 * W := W * T**H or W * T
520 *
521  CALL ctrmm( 'Right', 'Upper', transt, 'Non-unit', n, k,
522  $ one, t, ldt, work, ldwork )
523 *
524 * C := C - V**H * W**H
525 *
526  IF( m.GT.k ) THEN
527 *
528 * C2 := C2 - V2**H * W**H
529 *
530  CALL cgemm( 'Conjugate transpose',
531  $ 'Conjugate transpose', m-k, n, k, -one,
532  $ v( 1, k+1 ), ldv, work, ldwork, one,
533  $ c( k+1, 1 ), ldc )
534  END IF
535 *
536 * W := W * V1
537 *
538  CALL ctrmm( 'Right', 'Upper', 'No transpose', 'Unit', n,
539  $ k, one, v, ldv, work, ldwork )
540 *
541 * C1 := C1 - W**H
542 *
543  DO 150 j = 1, k
544  DO 140 i = 1, n
545  c( j, i ) = c( j, i ) - conjg( work( i, j ) )
546  140 CONTINUE
547  150 CONTINUE
548 *
549  ELSE IF( lsame( side, 'R' ) ) THEN
550 *
551 * Form C * H or C * H**H where C = ( C1 C2 )
552 *
553 * W := C * V**H = (C1*V1**H + C2*V2**H) (stored in WORK)
554 *
555 * W := C1
556 *
557  DO 160 j = 1, k
558  CALL ccopy( m, c( 1, j ), 1, work( 1, j ), 1 )
559  160 CONTINUE
560 *
561 * W := W * V1**H
562 *
563  CALL ctrmm( 'Right', 'Upper', 'Conjugate transpose',
564  $ 'Unit', m, k, one, v, ldv, work, ldwork )
565  IF( n.GT.k ) THEN
566 *
567 * W := W + C2 * V2**H
568 *
569  CALL cgemm( 'No transpose', 'Conjugate transpose', m,
570  $ k, n-k, one, c( 1, k+1 ), ldc,
571  $ v( 1, k+1 ), ldv, one, work, ldwork )
572  END IF
573 *
574 * W := W * T or W * T**H
575 *
576  CALL ctrmm( 'Right', 'Upper', trans, 'Non-unit', m, k,
577  $ one, t, ldt, work, ldwork )
578 *
579 * C := C - W * V
580 *
581  IF( n.GT.k ) THEN
582 *
583 * C2 := C2 - W * V2
584 *
585  CALL cgemm( 'No transpose', 'No transpose', m, n-k, k,
586  $ -one, work, ldwork, v( 1, k+1 ), ldv, one,
587  $ c( 1, k+1 ), ldc )
588  END IF
589 *
590 * W := W * V1
591 *
592  CALL ctrmm( 'Right', 'Upper', 'No transpose', 'Unit', m,
593  $ k, one, v, ldv, work, ldwork )
594 *
595 * C1 := C1 - W
596 *
597  DO 180 j = 1, k
598  DO 170 i = 1, m
599  c( i, j ) = c( i, j ) - work( i, j )
600  170 CONTINUE
601  180 CONTINUE
602 *
603  END IF
604 *
605  ELSE
606 *
607 * Let V = ( V1 V2 ) (V2: last K columns)
608 * where V2 is unit lower triangular.
609 *
610  IF( lsame( side, 'L' ) ) THEN
611 *
612 * Form H * C or H**H * C where C = ( C1 )
613 * ( C2 )
614 *
615 * W := C**H * V**H = (C1**H * V1**H + C2**H * V2**H) (stored in WORK)
616 *
617 * W := C2**H
618 *
619  DO 190 j = 1, k
620  CALL ccopy( n, c( m-k+j, 1 ), ldc, work( 1, j ), 1 )
621  CALL clacgv( n, work( 1, j ), 1 )
622  190 CONTINUE
623 *
624 * W := W * V2**H
625 *
626  CALL ctrmm( 'Right', 'Lower', 'Conjugate transpose',
627  $ 'Unit', n, k, one, v( 1, m-k+1 ), ldv, work,
628  $ ldwork )
629  IF( m.GT.k ) THEN
630 *
631 * W := W + C1**H * V1**H
632 *
633  CALL cgemm( 'Conjugate transpose',
634  $ 'Conjugate transpose', n, k, m-k, one, c,
635  $ ldc, v, ldv, one, work, ldwork )
636  END IF
637 *
638 * W := W * T**H or W * T
639 *
640  CALL ctrmm( 'Right', 'Lower', transt, 'Non-unit', n, k,
641  $ one, t, ldt, work, ldwork )
642 *
643 * C := C - V**H * W**H
644 *
645  IF( m.GT.k ) THEN
646 *
647 * C1 := C1 - V1**H * W**H
648 *
649  CALL cgemm( 'Conjugate transpose',
650  $ 'Conjugate transpose', m-k, n, k, -one, v,
651  $ ldv, work, ldwork, one, c, ldc )
652  END IF
653 *
654 * W := W * V2
655 *
656  CALL ctrmm( 'Right', 'Lower', 'No transpose', 'Unit', n,
657  $ k, one, v( 1, m-k+1 ), ldv, work, ldwork )
658 *
659 * C2 := C2 - W**H
660 *
661  DO 210 j = 1, k
662  DO 200 i = 1, n
663  c( m-k+j, i ) = c( m-k+j, i ) -
664  $ conjg( work( i, j ) )
665  200 CONTINUE
666  210 CONTINUE
667 *
668  ELSE IF( lsame( side, 'R' ) ) THEN
669 *
670 * Form C * H or C * H**H where C = ( C1 C2 )
671 *
672 * W := C * V**H = (C1*V1**H + C2*V2**H) (stored in WORK)
673 *
674 * W := C2
675 *
676  DO 220 j = 1, k
677  CALL ccopy( m, c( 1, n-k+j ), 1, work( 1, j ), 1 )
678  220 CONTINUE
679 *
680 * W := W * V2**H
681 *
682  CALL ctrmm( 'Right', 'Lower', 'Conjugate transpose',
683  $ 'Unit', m, k, one, v( 1, n-k+1 ), ldv, work,
684  $ ldwork )
685  IF( n.GT.k ) THEN
686 *
687 * W := W + C1 * V1**H
688 *
689  CALL cgemm( 'No transpose', 'Conjugate transpose', m,
690  $ k, n-k, one, c, ldc, v, ldv, one, work,
691  $ ldwork )
692  END IF
693 *
694 * W := W * T or W * T**H
695 *
696  CALL ctrmm( 'Right', 'Lower', trans, 'Non-unit', m, k,
697  $ one, t, ldt, work, ldwork )
698 *
699 * C := C - W * V
700 *
701  IF( n.GT.k ) THEN
702 *
703 * C1 := C1 - W * V1
704 *
705  CALL cgemm( 'No transpose', 'No transpose', m, n-k, k,
706  $ -one, work, ldwork, v, ldv, one, c, ldc )
707  END IF
708 *
709 * W := W * V2
710 *
711  CALL ctrmm( 'Right', 'Lower', 'No transpose', 'Unit', m,
712  $ k, one, v( 1, n-k+1 ), ldv, work, ldwork )
713 *
714 * C1 := C1 - W
715 *
716  DO 240 j = 1, k
717  DO 230 i = 1, m
718  c( i, n-k+j ) = c( i, n-k+j ) - work( i, j )
719  230 CONTINUE
720  240 CONTINUE
721 *
722  END IF
723 *
724  END IF
725  END IF
726 *
727  RETURN
728 *
729 * End of CLARFB
730 *
731  END
subroutine ctrmm(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)
CTRMM
Definition: ctrmm.f:179
subroutine cgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CGEMM
Definition: cgemm.f:189
subroutine ccopy(N, CX, INCX, CY, INCY)
CCOPY
Definition: ccopy.f:83
subroutine clacgv(N, X, INCX)
CLACGV conjugates a complex vector.
Definition: clacgv.f:76
subroutine clarfb(SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, T, LDT, C, LDC, WORK, LDWORK)
CLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix...
Definition: clarfb.f:197