LAPACK  3.8.0 LAPACK: Linear Algebra PACKage

## ◆ zdrvhe_rk()

 subroutine zdrvhe_rk ( logical, dimension( * ) DOTYPE, integer NN, integer, dimension( * ) NVAL, integer NRHS, double precision THRESH, logical TSTERR, integer NMAX, complex*16, dimension( * ) A, complex*16, dimension( * ) AFAC, complex*16, dimension( * ) E, complex*16, dimension( * ) AINV, complex*16, dimension( * ) B, complex*16, dimension( * ) X, complex*16, dimension( * ) XACT, complex*16, dimension( * ) WORK, double precision, dimension( * ) RWORK, integer, dimension( * ) IWORK, integer NOUT )

ZDRVHE_RK

Purpose:
` ZDRVHE_RK tests the driver routines ZHESV_RK.`
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix dimension N.``` [in] NRHS ``` NRHS is INTEGER The number of right hand side vectors to be generated for each linear system.``` [in] THRESH ``` THRESH is DOUBLE PRECISION The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for N, used in dimensioning the work arrays.``` [out] A ` A is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] AFAC ` AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] E ``` E is COMPLEX*16 array, dimension (NMAX) \param[out] AINV \verbatim AINV is COMPLEX*16 array, dimension (NMAX*NMAX)``` [out] B ` B is COMPLEX*16 array, dimension (NMAX*NRHS)` [out] X ` X is COMPLEX*16 array, dimension (NMAX*NRHS)` [out] XACT ` XACT is COMPLEX*16 array, dimension (NMAX*NRHS)` [out] WORK ` WORK is COMPLEX*16 array, dimension (NMAX*max(2,NRHS))` [out] RWORK ` RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)` [out] IWORK ` IWORK is INTEGER array, dimension (NMAX)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```
Date
December 2016

Definition at line 159 of file zdrvhe_rk.f.

159 *
160 * -- LAPACK test routine (version 3.7.0) --
161 * -- LAPACK is a software package provided by Univ. of Tennessee, --
162 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
163 * December 2016
164 *
165 * .. Scalar Arguments ..
166  LOGICAL tsterr
167  INTEGER nmax, nn, nout, nrhs
168  DOUBLE PRECISION thresh
169 * ..
170 * .. Array Arguments ..
171  LOGICAL dotype( * )
172  INTEGER iwork( * ), nval( * )
173  DOUBLE PRECISION rwork( * )
174  COMPLEX*16 a( * ), afac( * ), ainv( * ), b( * ), e( * ),
175  \$ work( * ), x( * ), xact( * )
176 * ..
177 *
178 * =====================================================================
179 *
180 * .. Parameters ..
181  DOUBLE PRECISION one, zero
182  parameter( one = 1.0d+0, zero = 0.0d+0 )
183  INTEGER ntypes, ntests
184  parameter( ntypes = 10, ntests = 3 )
185  INTEGER nfact
186  parameter( nfact = 2 )
187 * ..
188 * .. Local Scalars ..
189  LOGICAL zerot
190  CHARACTER dist, fact, TYPE, uplo, xtype
191  CHARACTER*3 matpath, path
192  INTEGER i, i1, i2, ifact, imat, in, info, ioff, iuplo,
193  \$ izero, j, k, kl, ku, lda, lwork, mode, n,
194  \$ nb, nbmin, nerrs, nfail, nimat, nrun, nt
195  DOUBLE PRECISION ainvnm, anorm, cndnum, rcondc
196 * ..
197 * .. Local Arrays ..
198  CHARACTER facts( nfact ), uplos( 2 )
199  INTEGER iseed( 4 ), iseedy( 4 )
200  DOUBLE PRECISION result( ntests )
201
202 * ..
203 * .. External Functions ..
204  DOUBLE PRECISION zlanhe
205  EXTERNAL zlanhe
206 * ..
207 * .. External Subroutines ..
208  EXTERNAL aladhd, alaerh, alasvm, xlaenv, zerrvx,
211 * ..
212 * .. Scalars in Common ..
213  LOGICAL lerr, ok
214  CHARACTER*32 srnamt
215  INTEGER infot, nunit
216 * ..
217 * .. Common blocks ..
218  COMMON / infoc / infot, nunit, ok, lerr
219  COMMON / srnamc / srnamt
220 * ..
221 * .. Intrinsic Functions ..
222  INTRINSIC max, min
223 * ..
224 * .. Data statements ..
225  DATA iseedy / 1988, 1989, 1990, 1991 /
226  DATA uplos / 'U', 'L' / , facts / 'F', 'N' /
227 * ..
228 * .. Executable Statements ..
229 *
230 * Initialize constants and the random number seed.
231 *
232 * Test path
233 *
234  path( 1: 1 ) = 'Zomplex precision'
235  path( 2: 3 ) = 'HK'
236 *
237 * Path to generate matrices
238 *
239  matpath( 1: 1 ) = 'Zomplex precision'
240  matpath( 2: 3 ) = 'HE'
241 *
242  nrun = 0
243  nfail = 0
244  nerrs = 0
245  DO 10 i = 1, 4
246  iseed( i ) = iseedy( i )
247  10 CONTINUE
248  lwork = max( 2*nmax, nmax*nrhs )
249 *
250 * Test the error exits
251 *
252  IF( tsterr )
253  \$ CALL zerrvx( path, nout )
254  infot = 0
255 *
256 * Set the block size and minimum block size for which the block
257 * routine should be used, which will be later returned by ILAENV.
258 *
259  nb = 1
260  nbmin = 2
261  CALL xlaenv( 1, nb )
262  CALL xlaenv( 2, nbmin )
263 *
264 * Do for each value of N in NVAL
265 *
266  DO 180 in = 1, nn
267  n = nval( in )
268  lda = max( n, 1 )
269  xtype = 'N'
270  nimat = ntypes
271  IF( n.LE.0 )
272  \$ nimat = 1
273 *
274  DO 170 imat = 1, nimat
275 *
276 * Do the tests only if DOTYPE( IMAT ) is true.
277 *
278  IF( .NOT.dotype( imat ) )
279  \$ GO TO 170
280 *
281 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
282 *
283  zerot = imat.GE.3 .AND. imat.LE.6
284  IF( zerot .AND. n.LT.imat-2 )
285  \$ GO TO 170
286 *
287 * Do first for UPLO = 'U', then for UPLO = 'L'
288 *
289  DO 160 iuplo = 1, 2
290  uplo = uplos( iuplo )
291 *
292 * Begin generate the test matrix A.
293 *
294 * Set up parameters with ZLATB4 for the matrix generator
295 * based on the type of matrix to be generated.
296 *
297  CALL zlatb4( matpath, imat, n, n, TYPE, kl, ku, anorm,
298  \$ mode, cndnum, dist )
299 *
300 * Generate a matrix with ZLATMS.
301 *
302  srnamt = 'ZLATMS'
303  CALL zlatms( n, n, dist, iseed, TYPE, rwork, mode,
304  \$ cndnum, anorm, kl, ku, uplo, a, lda,
305  \$ work, info )
306 *
307 * Check error code from ZLATMS and handle error.
308 *
309  IF( info.NE.0 ) THEN
310  CALL alaerh( path, 'ZLATMS', info, 0, uplo, n, n,
311  \$ -1, -1, -1, imat, nfail, nerrs, nout )
312  GO TO 160
313  END IF
314 *
315 * For types 3-6, zero one or more rows and columns of
316 * the matrix to test that INFO is returned correctly.
317 *
318  IF( zerot ) THEN
319  IF( imat.EQ.3 ) THEN
320  izero = 1
321  ELSE IF( imat.EQ.4 ) THEN
322  izero = n
323  ELSE
324  izero = n / 2 + 1
325  END IF
326 *
327  IF( imat.LT.6 ) THEN
328 *
329 * Set row and column IZERO to zero.
330 *
331  IF( iuplo.EQ.1 ) THEN
332  ioff = ( izero-1 )*lda
333  DO 20 i = 1, izero - 1
334  a( ioff+i ) = zero
335  20 CONTINUE
336  ioff = ioff + izero
337  DO 30 i = izero, n
338  a( ioff ) = zero
339  ioff = ioff + lda
340  30 CONTINUE
341  ELSE
342  ioff = izero
343  DO 40 i = 1, izero - 1
344  a( ioff ) = zero
345  ioff = ioff + lda
346  40 CONTINUE
347  ioff = ioff - izero
348  DO 50 i = izero, n
349  a( ioff+i ) = zero
350  50 CONTINUE
351  END IF
352  ELSE
353  IF( iuplo.EQ.1 ) THEN
354 *
355 * Set the first IZERO rows and columns to zero.
356 *
357  ioff = 0
358  DO 70 j = 1, n
359  i2 = min( j, izero )
360  DO 60 i = 1, i2
361  a( ioff+i ) = zero
362  60 CONTINUE
363  ioff = ioff + lda
364  70 CONTINUE
365  ELSE
366 *
367 * Set the first IZERO rows and columns to zero.
368 *
369  ioff = 0
370  DO 90 j = 1, n
371  i1 = max( j, izero )
372  DO 80 i = i1, n
373  a( ioff+i ) = zero
374  80 CONTINUE
375  ioff = ioff + lda
376  90 CONTINUE
377  END IF
378  END IF
379  ELSE
380  izero = 0
381  END IF
382 *
383 * End generate the test matrix A.
384 *
385 *
386  DO 150 ifact = 1, nfact
387 *
388 * Do first for FACT = 'F', then for other values.
389 *
390  fact = facts( ifact )
391 *
392 * Compute the condition number
393 *
394  IF( zerot ) THEN
395  IF( ifact.EQ.1 )
396  \$ GO TO 150
397  rcondc = zero
398 *
399  ELSE IF( ifact.EQ.1 ) THEN
400 *
401 * Compute the 1-norm of A.
402 *
403  anorm = zlanhe( '1', uplo, n, a, lda, rwork )
404 *
405 * Factor the matrix A.
406 *
407
408  CALL zlacpy( uplo, n, n, a, lda, afac, lda )
409  CALL zhetrf_rk( uplo, n, afac, lda, e, iwork, work,
410  \$ lwork, info )
411 *
412 * Compute inv(A) and take its norm.
413 *
414  CALL zlacpy( uplo, n, n, afac, lda, ainv, lda )
415  lwork = (n+nb+1)*(nb+3)
416 *
417 * We need to copute the invesrse to compute
418 * RCONDC that is used later in TEST3.
419 *
420  CALL zhetri_3( uplo, n, ainv, lda, e, iwork,
421  \$ work, lwork, info )
422  ainvnm = zlanhe( '1', uplo, n, ainv, lda, rwork )
423 *
424 * Compute the 1-norm condition number of A.
425 *
426  IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
427  rcondc = one
428  ELSE
429  rcondc = ( one / anorm ) / ainvnm
430  END IF
431  END IF
432 *
433 * Form an exact solution and set the right hand side.
434 *
435  srnamt = 'ZLARHS'
436  CALL zlarhs( matpath, xtype, uplo, ' ', n, n, kl, ku,
437  \$ nrhs, a, lda, xact, lda, b, lda, iseed,
438  \$ info )
439  xtype = 'C'
440 *
441 * --- Test ZHESV_RK ---
442 *
443  IF( ifact.EQ.2 ) THEN
444  CALL zlacpy( uplo, n, n, a, lda, afac, lda )
445  CALL zlacpy( 'Full', n, nrhs, b, lda, x, lda )
446 *
447 * Factor the matrix and solve the system using
448 * ZHESV_RK.
449 *
450  srnamt = 'ZHESV_RK'
451  CALL zhesv_rk( uplo, n, nrhs, afac, lda, e, iwork,
452  \$ x, lda, work, lwork, info )
453 *
454 * Adjust the expected value of INFO to account for
455 * pivoting.
456 *
457  k = izero
458  IF( k.GT.0 ) THEN
459  100 CONTINUE
460  IF( iwork( k ).LT.0 ) THEN
461  IF( iwork( k ).NE.-k ) THEN
462  k = -iwork( k )
463  GO TO 100
464  END IF
465  ELSE IF( iwork( k ).NE.k ) THEN
466  k = iwork( k )
467  GO TO 100
468  END IF
469  END IF
470 *
471 * Check error code from ZHESV_RK and handle error.
472 *
473  IF( info.NE.k ) THEN
474  CALL alaerh( path, 'ZHESV_RK', info, k, uplo,
475  \$ n, n, -1, -1, nrhs, imat, nfail,
476  \$ nerrs, nout )
477  GO TO 120
478  ELSE IF( info.NE.0 ) THEN
479  GO TO 120
480  END IF
481 *
482 *+ TEST 1 Reconstruct matrix from factors and compute
483 * residual.
484 *
485  CALL zhet01_3( uplo, n, a, lda, afac, lda, e,
486  \$ iwork, ainv, lda, rwork,
487  \$ result( 1 ) )
488 *
489 *+ TEST 2 Compute residual of the computed solution.
490 *
491  CALL zlacpy( 'Full', n, nrhs, b, lda, work, lda )
492  CALL zpot02( uplo, n, nrhs, a, lda, x, lda, work,
493  \$ lda, rwork, result( 2 ) )
494 *
495 *+ TEST 3
496 * Check solution from generated exact solution.
497 *
498  CALL zget04( n, nrhs, x, lda, xact, lda, rcondc,
499  \$ result( 3 ) )
500  nt = 3
501 *
502 * Print information about the tests that did not pass
503 * the threshold.
504 *
505  DO 110 k = 1, nt
506  IF( result( k ).GE.thresh ) THEN
507  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
508  \$ CALL aladhd( nout, path )
509  WRITE( nout, fmt = 9999 )'ZHESV_RK', uplo,
510  \$ n, imat, k, result( k )
511  nfail = nfail + 1
512  END IF
513  110 CONTINUE
514  nrun = nrun + nt
515  120 CONTINUE
516  END IF
517 *
518  150 CONTINUE
519 *
520  160 CONTINUE
521  170 CONTINUE
522  180 CONTINUE
523 *
524 * Print a summary of the results.
525 *
526  CALL alasvm( path, nout, nfail, nrun, nerrs )
527 *
528  9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i2,
529  \$ ', test ', i2, ', ratio =', g12.5 )
530  RETURN
531 *
532 * End of ZDRVHE_RK
533 *
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:75
subroutine zhesv_rk(UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB, WORK, LWORK, INFO)
ZHESV_RK computes the solution to system of linear equations A * X = B for SY matrices ...
Definition: zhesv_rk.f:230
double precision function zlanhe(NORM, UPLO, N, A, LDA, WORK)
ZLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix.
Definition: zlanhe.f:126
subroutine zget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
ZGET04
Definition: zget04.f:104
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:149
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:105
subroutine zlatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
ZLATB4
Definition: zlatb4.f:123
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:83
subroutine zhetri_3(UPLO, N, A, LDA, E, IPIV, WORK, LWORK, INFO)
ZHETRI_3
Definition: zhetri_3.f:172
subroutine zlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
ZLATMS
Definition: zlatms.f:334
subroutine zerrvx(PATH, NUNIT)
ZERRVX
Definition: zerrvx.f:57
subroutine zlarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
ZLARHS
Definition: zlarhs.f:211
subroutine zpot02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
ZPOT02
Definition: zpot02.f:129
subroutine zhetrf_rk(UPLO, N, A, LDA, E, IPIV, WORK, LWORK, INFO)
ZHETRF_RK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch...
Definition: zhetrf_rk.f:261
subroutine zhet01_3(UPLO, N, A, LDA, AFAC, LDAFAC, E, IPIV, C, LDC, RWORK, RESID)
ZHET01_3
Definition: zhet01_3.f:143
Here is the call graph for this function:
Here is the caller graph for this function: