LAPACK  3.8.0 LAPACK: Linear Algebra PACKage

## ◆ zdrvpb()

 subroutine zdrvpb ( logical, dimension( * ) DOTYPE, integer NN, integer, dimension( * ) NVAL, integer NRHS, double precision THRESH, logical TSTERR, integer NMAX, complex*16, dimension( * ) A, complex*16, dimension( * ) AFAC, complex*16, dimension( * ) ASAV, complex*16, dimension( * ) B, complex*16, dimension( * ) BSAV, complex*16, dimension( * ) X, complex*16, dimension( * ) XACT, double precision, dimension( * ) S, complex*16, dimension( * ) WORK, double precision, dimension( * ) RWORK, integer NOUT )

ZDRVPB

Purpose:
` ZDRVPB tests the driver routines ZPBSV and -SVX.`
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix dimension N.``` [in] NRHS ``` NRHS is INTEGER The number of right hand side vectors to be generated for each linear system.``` [in] THRESH ``` THRESH is DOUBLE PRECISION The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for N, used in dimensioning the work arrays.``` [out] A ` A is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] AFAC ` AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] ASAV ` ASAV is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] B ` B is COMPLEX*16 array, dimension (NMAX*NRHS)` [out] BSAV ` BSAV is COMPLEX*16 array, dimension (NMAX*NRHS)` [out] X ` X is COMPLEX*16 array, dimension (NMAX*NRHS)` [out] XACT ` XACT is COMPLEX*16 array, dimension (NMAX*NRHS)` [out] S ` S is DOUBLE PRECISION array, dimension (NMAX)` [out] WORK ``` WORK is COMPLEX*16 array, dimension (NMAX*max(3,NRHS))``` [out] RWORK ` RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```
Date
December 2016

Definition at line 161 of file zdrvpb.f.

161 *
162 * -- LAPACK test routine (version 3.7.0) --
163 * -- LAPACK is a software package provided by Univ. of Tennessee, --
164 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
165 * December 2016
166 *
167 * .. Scalar Arguments ..
168  LOGICAL tsterr
169  INTEGER nmax, nn, nout, nrhs
170  DOUBLE PRECISION thresh
171 * ..
172 * .. Array Arguments ..
173  LOGICAL dotype( * )
174  INTEGER nval( * )
175  DOUBLE PRECISION rwork( * ), s( * )
176  COMPLEX*16 a( * ), afac( * ), asav( * ), b( * ),
177  \$ bsav( * ), work( * ), x( * ), xact( * )
178 * ..
179 *
180 * =====================================================================
181 *
182 * .. Parameters ..
183  DOUBLE PRECISION one, zero
184  parameter( one = 1.0d+0, zero = 0.0d+0 )
185  INTEGER ntypes, ntests
186  parameter( ntypes = 8, ntests = 6 )
187  INTEGER nbw
188  parameter( nbw = 4 )
189 * ..
190 * .. Local Scalars ..
191  LOGICAL equil, nofact, prefac, zerot
192  CHARACTER dist, equed, fact, packit, TYPE, uplo, xtype
193  CHARACTER*3 path
194  INTEGER i, i1, i2, iequed, ifact, ikd, imat, in, info,
195  \$ ioff, iuplo, iw, izero, k, k1, kd, kl, koff,
196  \$ ku, lda, ldab, mode, n, nb, nbmin, nerrs,
197  \$ nfact, nfail, nimat, nkd, nrun, nt
198  DOUBLE PRECISION ainvnm, amax, anorm, cndnum, rcond, rcondc,
199  \$ roldc, scond
200 * ..
201 * .. Local Arrays ..
202  CHARACTER equeds( 2 ), facts( 3 )
203  INTEGER iseed( 4 ), iseedy( 4 ), kdval( nbw )
204  DOUBLE PRECISION result( ntests )
205 * ..
206 * .. External Functions ..
207  LOGICAL lsame
208  DOUBLE PRECISION dget06, zlange, zlanhb
209  EXTERNAL lsame, dget06, zlange, zlanhb
210 * ..
211 * .. External Subroutines ..
212  EXTERNAL aladhd, alaerh, alasvm, xlaenv, zcopy, zerrvx,
216 * ..
217 * .. Intrinsic Functions ..
218  INTRINSIC dcmplx, max, min
219 * ..
220 * .. Scalars in Common ..
221  LOGICAL lerr, ok
222  CHARACTER*32 srnamt
223  INTEGER infot, nunit
224 * ..
225 * .. Common blocks ..
226  COMMON / infoc / infot, nunit, ok, lerr
227  COMMON / srnamc / srnamt
228 * ..
229 * .. Data statements ..
230  DATA iseedy / 1988, 1989, 1990, 1991 /
231  DATA facts / 'F', 'N', 'E' / , equeds / 'N', 'Y' /
232 * ..
233 * .. Executable Statements ..
234 *
235 * Initialize constants and the random number seed.
236 *
237  path( 1: 1 ) = 'Zomplex precision'
238  path( 2: 3 ) = 'PB'
239  nrun = 0
240  nfail = 0
241  nerrs = 0
242  DO 10 i = 1, 4
243  iseed( i ) = iseedy( i )
244  10 CONTINUE
245 *
246 * Test the error exits
247 *
248  IF( tsterr )
249  \$ CALL zerrvx( path, nout )
250  infot = 0
251  kdval( 1 ) = 0
252 *
253 * Set the block size and minimum block size for testing.
254 *
255  nb = 1
256  nbmin = 2
257  CALL xlaenv( 1, nb )
258  CALL xlaenv( 2, nbmin )
259 *
260 * Do for each value of N in NVAL
261 *
262  DO 110 in = 1, nn
263  n = nval( in )
264  lda = max( n, 1 )
265  xtype = 'N'
266 *
267 * Set limits on the number of loop iterations.
268 *
269  nkd = max( 1, min( n, 4 ) )
270  nimat = ntypes
271  IF( n.EQ.0 )
272  \$ nimat = 1
273 *
274  kdval( 2 ) = n + ( n+1 ) / 4
275  kdval( 3 ) = ( 3*n-1 ) / 4
276  kdval( 4 ) = ( n+1 ) / 4
277 *
278  DO 100 ikd = 1, nkd
279 *
280 * Do for KD = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This order
281 * makes it easier to skip redundant values for small values
282 * of N.
283 *
284  kd = kdval( ikd )
285  ldab = kd + 1
286 *
287 * Do first for UPLO = 'U', then for UPLO = 'L'
288 *
289  DO 90 iuplo = 1, 2
290  koff = 1
291  IF( iuplo.EQ.1 ) THEN
292  uplo = 'U'
293  packit = 'Q'
294  koff = max( 1, kd+2-n )
295  ELSE
296  uplo = 'L'
297  packit = 'B'
298  END IF
299 *
300  DO 80 imat = 1, nimat
301 *
302 * Do the tests only if DOTYPE( IMAT ) is true.
303 *
304  IF( .NOT.dotype( imat ) )
305  \$ GO TO 80
306 *
307 * Skip types 2, 3, or 4 if the matrix size is too small.
308 *
309  zerot = imat.GE.2 .AND. imat.LE.4
310  IF( zerot .AND. n.LT.imat-1 )
311  \$ GO TO 80
312 *
313  IF( .NOT.zerot .OR. .NOT.dotype( 1 ) ) THEN
314 *
315 * Set up parameters with ZLATB4 and generate a test
316 * matrix with ZLATMS.
317 *
318  CALL zlatb4( path, imat, n, n, TYPE, kl, ku, anorm,
319  \$ mode, cndnum, dist )
320 *
321  srnamt = 'ZLATMS'
322  CALL zlatms( n, n, dist, iseed, TYPE, rwork, mode,
323  \$ cndnum, anorm, kd, kd, packit,
324  \$ a( koff ), ldab, work, info )
325 *
326 * Check error code from ZLATMS.
327 *
328  IF( info.NE.0 ) THEN
329  CALL alaerh( path, 'ZLATMS', info, 0, uplo, n,
330  \$ n, -1, -1, -1, imat, nfail, nerrs,
331  \$ nout )
332  GO TO 80
333  END IF
334  ELSE IF( izero.GT.0 ) THEN
335 *
336 * Use the same matrix for types 3 and 4 as for type
337 * 2 by copying back the zeroed out column,
338 *
339  iw = 2*lda + 1
340  IF( iuplo.EQ.1 ) THEN
341  ioff = ( izero-1 )*ldab + kd + 1
342  CALL zcopy( izero-i1, work( iw ), 1,
343  \$ a( ioff-izero+i1 ), 1 )
344  iw = iw + izero - i1
345  CALL zcopy( i2-izero+1, work( iw ), 1,
346  \$ a( ioff ), max( ldab-1, 1 ) )
347  ELSE
348  ioff = ( i1-1 )*ldab + 1
349  CALL zcopy( izero-i1, work( iw ), 1,
350  \$ a( ioff+izero-i1 ),
351  \$ max( ldab-1, 1 ) )
352  ioff = ( izero-1 )*ldab + 1
353  iw = iw + izero - i1
354  CALL zcopy( i2-izero+1, work( iw ), 1,
355  \$ a( ioff ), 1 )
356  END IF
357  END IF
358 *
359 * For types 2-4, zero one row and column of the matrix
360 * to test that INFO is returned correctly.
361 *
362  izero = 0
363  IF( zerot ) THEN
364  IF( imat.EQ.2 ) THEN
365  izero = 1
366  ELSE IF( imat.EQ.3 ) THEN
367  izero = n
368  ELSE
369  izero = n / 2 + 1
370  END IF
371 *
372 * Save the zeroed out row and column in WORK(*,3)
373 *
374  iw = 2*lda
375  DO 20 i = 1, min( 2*kd+1, n )
376  work( iw+i ) = zero
377  20 CONTINUE
378  iw = iw + 1
379  i1 = max( izero-kd, 1 )
380  i2 = min( izero+kd, n )
381 *
382  IF( iuplo.EQ.1 ) THEN
383  ioff = ( izero-1 )*ldab + kd + 1
384  CALL zswap( izero-i1, a( ioff-izero+i1 ), 1,
385  \$ work( iw ), 1 )
386  iw = iw + izero - i1
387  CALL zswap( i2-izero+1, a( ioff ),
388  \$ max( ldab-1, 1 ), work( iw ), 1 )
389  ELSE
390  ioff = ( i1-1 )*ldab + 1
391  CALL zswap( izero-i1, a( ioff+izero-i1 ),
392  \$ max( ldab-1, 1 ), work( iw ), 1 )
393  ioff = ( izero-1 )*ldab + 1
394  iw = iw + izero - i1
395  CALL zswap( i2-izero+1, a( ioff ), 1,
396  \$ work( iw ), 1 )
397  END IF
398  END IF
399 *
400 * Set the imaginary part of the diagonals.
401 *
402  IF( iuplo.EQ.1 ) THEN
403  CALL zlaipd( n, a( kd+1 ), ldab, 0 )
404  ELSE
405  CALL zlaipd( n, a( 1 ), ldab, 0 )
406  END IF
407 *
408 * Save a copy of the matrix A in ASAV.
409 *
410  CALL zlacpy( 'Full', kd+1, n, a, ldab, asav, ldab )
411 *
412  DO 70 iequed = 1, 2
413  equed = equeds( iequed )
414  IF( iequed.EQ.1 ) THEN
415  nfact = 3
416  ELSE
417  nfact = 1
418  END IF
419 *
420  DO 60 ifact = 1, nfact
421  fact = facts( ifact )
422  prefac = lsame( fact, 'F' )
423  nofact = lsame( fact, 'N' )
424  equil = lsame( fact, 'E' )
425 *
426  IF( zerot ) THEN
427  IF( prefac )
428  \$ GO TO 60
429  rcondc = zero
430 *
431  ELSE IF( .NOT.lsame( fact, 'N' ) ) THEN
432 *
433 * Compute the condition number for comparison
434 * with the value returned by ZPBSVX (FACT =
435 * 'N' reuses the condition number from the
436 * previous iteration with FACT = 'F').
437 *
438  CALL zlacpy( 'Full', kd+1, n, asav, ldab,
439  \$ afac, ldab )
440  IF( equil .OR. iequed.GT.1 ) THEN
441 *
442 * Compute row and column scale factors to
443 * equilibrate the matrix A.
444 *
445  CALL zpbequ( uplo, n, kd, afac, ldab, s,
446  \$ scond, amax, info )
447  IF( info.EQ.0 .AND. n.GT.0 ) THEN
448  IF( iequed.GT.1 )
449  \$ scond = zero
450 *
451 * Equilibrate the matrix.
452 *
453  CALL zlaqhb( uplo, n, kd, afac, ldab,
454  \$ s, scond, amax, equed )
455  END IF
456  END IF
457 *
458 * Save the condition number of the
459 * non-equilibrated system for use in ZGET04.
460 *
461  IF( equil )
462  \$ roldc = rcondc
463 *
464 * Compute the 1-norm of A.
465 *
466  anorm = zlanhb( '1', uplo, n, kd, afac, ldab,
467  \$ rwork )
468 *
469 * Factor the matrix A.
470 *
471  CALL zpbtrf( uplo, n, kd, afac, ldab, info )
472 *
473 * Form the inverse of A.
474 *
475  CALL zlaset( 'Full', n, n, dcmplx( zero ),
476  \$ dcmplx( one ), a, lda )
477  srnamt = 'ZPBTRS'
478  CALL zpbtrs( uplo, n, kd, n, afac, ldab, a,
479  \$ lda, info )
480 *
481 * Compute the 1-norm condition number of A.
482 *
483  ainvnm = zlange( '1', n, n, a, lda, rwork )
484  IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
485  rcondc = one
486  ELSE
487  rcondc = ( one / anorm ) / ainvnm
488  END IF
489  END IF
490 *
491 * Restore the matrix A.
492 *
493  CALL zlacpy( 'Full', kd+1, n, asav, ldab, a,
494  \$ ldab )
495 *
496 * Form an exact solution and set the right hand
497 * side.
498 *
499  srnamt = 'ZLARHS'
500  CALL zlarhs( path, xtype, uplo, ' ', n, n, kd,
501  \$ kd, nrhs, a, ldab, xact, lda, b,
502  \$ lda, iseed, info )
503  xtype = 'C'
504  CALL zlacpy( 'Full', n, nrhs, b, lda, bsav,
505  \$ lda )
506 *
507  IF( nofact ) THEN
508 *
509 * --- Test ZPBSV ---
510 *
511 * Compute the L*L' or U'*U factorization of the
512 * matrix and solve the system.
513 *
514  CALL zlacpy( 'Full', kd+1, n, a, ldab, afac,
515  \$ ldab )
516  CALL zlacpy( 'Full', n, nrhs, b, lda, x,
517  \$ lda )
518 *
519  srnamt = 'ZPBSV '
520  CALL zpbsv( uplo, n, kd, nrhs, afac, ldab, x,
521  \$ lda, info )
522 *
523 * Check error code from ZPBSV .
524 *
525  IF( info.NE.izero ) THEN
526  CALL alaerh( path, 'ZPBSV ', info, izero,
527  \$ uplo, n, n, kd, kd, nrhs,
528  \$ imat, nfail, nerrs, nout )
529  GO TO 40
530  ELSE IF( info.NE.0 ) THEN
531  GO TO 40
532  END IF
533 *
534 * Reconstruct matrix from factors and compute
535 * residual.
536 *
537  CALL zpbt01( uplo, n, kd, a, ldab, afac,
538  \$ ldab, rwork, result( 1 ) )
539 *
540 * Compute residual of the computed solution.
541 *
542  CALL zlacpy( 'Full', n, nrhs, b, lda, work,
543  \$ lda )
544  CALL zpbt02( uplo, n, kd, nrhs, a, ldab, x,
545  \$ lda, work, lda, rwork,
546  \$ result( 2 ) )
547 *
548 * Check solution from generated exact solution.
549 *
550  CALL zget04( n, nrhs, x, lda, xact, lda,
551  \$ rcondc, result( 3 ) )
552  nt = 3
553 *
554 * Print information about the tests that did
555 * not pass the threshold.
556 *
557  DO 30 k = 1, nt
558  IF( result( k ).GE.thresh ) THEN
559  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
560  \$ CALL aladhd( nout, path )
561  WRITE( nout, fmt = 9999 )'ZPBSV ',
562  \$ uplo, n, kd, imat, k, result( k )
563  nfail = nfail + 1
564  END IF
565  30 CONTINUE
566  nrun = nrun + nt
567  40 CONTINUE
568  END IF
569 *
570 * --- Test ZPBSVX ---
571 *
572  IF( .NOT.prefac )
573  \$ CALL zlaset( 'Full', kd+1, n, dcmplx( zero ),
574  \$ dcmplx( zero ), afac, ldab )
575  CALL zlaset( 'Full', n, nrhs, dcmplx( zero ),
576  \$ dcmplx( zero ), x, lda )
577  IF( iequed.GT.1 .AND. n.GT.0 ) THEN
578 *
579 * Equilibrate the matrix if FACT='F' and
580 * EQUED='Y'
581 *
582  CALL zlaqhb( uplo, n, kd, a, ldab, s, scond,
583  \$ amax, equed )
584  END IF
585 *
586 * Solve the system and compute the condition
587 * number and error bounds using ZPBSVX.
588 *
589  srnamt = 'ZPBSVX'
590  CALL zpbsvx( fact, uplo, n, kd, nrhs, a, ldab,
591  \$ afac, ldab, equed, s, b, lda, x,
592  \$ lda, rcond, rwork, rwork( nrhs+1 ),
593  \$ work, rwork( 2*nrhs+1 ), info )
594 *
595 * Check the error code from ZPBSVX.
596 *
597  IF( info.NE.izero ) THEN
598  CALL alaerh( path, 'ZPBSVX', info, izero,
599  \$ fact // uplo, n, n, kd, kd,
600  \$ nrhs, imat, nfail, nerrs, nout )
601  GO TO 60
602  END IF
603 *
604  IF( info.EQ.0 ) THEN
605  IF( .NOT.prefac ) THEN
606 *
607 * Reconstruct matrix from factors and
608 * compute residual.
609 *
610  CALL zpbt01( uplo, n, kd, a, ldab, afac,
611  \$ ldab, rwork( 2*nrhs+1 ),
612  \$ result( 1 ) )
613  k1 = 1
614  ELSE
615  k1 = 2
616  END IF
617 *
618 * Compute residual of the computed solution.
619 *
620  CALL zlacpy( 'Full', n, nrhs, bsav, lda,
621  \$ work, lda )
622  CALL zpbt02( uplo, n, kd, nrhs, asav, ldab,
623  \$ x, lda, work, lda,
624  \$ rwork( 2*nrhs+1 ), result( 2 ) )
625 *
626 * Check solution from generated exact solution.
627 *
628  IF( nofact .OR. ( prefac .AND. lsame( equed,
629  \$ 'N' ) ) ) THEN
630  CALL zget04( n, nrhs, x, lda, xact, lda,
631  \$ rcondc, result( 3 ) )
632  ELSE
633  CALL zget04( n, nrhs, x, lda, xact, lda,
634  \$ roldc, result( 3 ) )
635  END IF
636 *
637 * Check the error bounds from iterative
638 * refinement.
639 *
640  CALL zpbt05( uplo, n, kd, nrhs, asav, ldab,
641  \$ b, lda, x, lda, xact, lda,
642  \$ rwork, rwork( nrhs+1 ),
643  \$ result( 4 ) )
644  ELSE
645  k1 = 6
646  END IF
647 *
648 * Compare RCOND from ZPBSVX with the computed
649 * value in RCONDC.
650 *
651  result( 6 ) = dget06( rcond, rcondc )
652 *
653 * Print information about the tests that did not
654 * pass the threshold.
655 *
656  DO 50 k = k1, 6
657  IF( result( k ).GE.thresh ) THEN
658  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
659  \$ CALL aladhd( nout, path )
660  IF( prefac ) THEN
661  WRITE( nout, fmt = 9997 )'ZPBSVX',
662  \$ fact, uplo, n, kd, equed, imat, k,
663  \$ result( k )
664  ELSE
665  WRITE( nout, fmt = 9998 )'ZPBSVX',
666  \$ fact, uplo, n, kd, imat, k,
667  \$ result( k )
668  END IF
669  nfail = nfail + 1
670  END IF
671  50 CONTINUE
672  nrun = nrun + 7 - k1
673  60 CONTINUE
674  70 CONTINUE
675  80 CONTINUE
676  90 CONTINUE
677  100 CONTINUE
678  110 CONTINUE
679 *
680 * Print a summary of the results.
681 *
682  CALL alasvm( path, nout, nfail, nrun, nerrs )
683 *
684  9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', KD =', i5,
685  \$ ', type ', i1, ', test(', i1, ')=', g12.5 )
686  9998 FORMAT( 1x, a, '( ''', a1, ''', ''', a1, ''', ', i5, ', ', i5,
687  \$ ', ... ), type ', i1, ', test(', i1, ')=', g12.5 )
688  9997 FORMAT( 1x, a, '( ''', a1, ''', ''', a1, ''', ', i5, ', ', i5,
689  \$ ', ... ), EQUED=''', a1, ''', type ', i1, ', test(', i1,
690  \$ ')=', g12.5 )
691  RETURN
692 *
693 * End of ZDRVPB
694 *
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:75
subroutine zpbt05(UPLO, N, KD, NRHS, AB, LDAB, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
ZPBT05
Definition: zpbt05.f:173
subroutine zpbtrs(UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO)
ZPBTRS
Definition: zpbtrs.f:123
subroutine zget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
ZGET04
Definition: zget04.f:104
subroutine zpbequ(UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFO)
ZPBEQU
Definition: zpbequ.f:132
subroutine zcopy(N, ZX, INCX, ZY, INCY)
ZCOPY
Definition: zcopy.f:83
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:149
subroutine zpbtrf(UPLO, N, KD, AB, LDAB, INFO)
ZPBTRF
Definition: zpbtrf.f:144
subroutine zswap(N, ZX, INCX, ZY, INCY)
ZSWAP
Definition: zswap.f:83
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:105
subroutine zlatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
ZLATB4
Definition: zlatb4.f:123
subroutine zpbt01(UPLO, N, KD, A, LDA, AFAC, LDAFAC, RWORK, RESID)
ZPBT01
Definition: zpbt01.f:122
subroutine zpbsvx(FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO)
ZPBSVX computes the solution to system of linear equations A * X = B for OTHER matrices ...
Definition: zpbsvx.f:344
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:83
subroutine zpbsv(UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO)
ZPBSV computes the solution to system of linear equations A * X = B for OTHER matrices ...
Definition: zpbsv.f:166
double precision function zlanhb(NORM, UPLO, N, K, AB, LDAB, WORK)
ZLANHB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian band matrix.
Definition: zlanhb.f:134
double precision function zlange(NORM, M, N, A, LDA, WORK)
ZLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: zlange.f:117
subroutine zlaipd(N, A, INDA, VINDA)
ZLAIPD
Definition: zlaipd.f:85
subroutine zlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
ZLATMS
Definition: zlatms.f:334
subroutine zlaset(UPLO, M, N, ALPHA, BETA, A, LDA)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values...
Definition: zlaset.f:108
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
subroutine zlaqhb(UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, EQUED)
ZLAQHB scales a Hermitian band matrix, using scaling factors computed by cpbequ.
Definition: zlaqhb.f:143
double precision function dget06(RCOND, RCONDC)
DGET06
Definition: dget06.f:57
subroutine zerrvx(PATH, NUNIT)
ZERRVX
Definition: zerrvx.f:57
subroutine zlarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
ZLARHS
Definition: zlarhs.f:211
subroutine zpbt02(UPLO, N, KD, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
ZPBT02
Definition: zpbt02.f:138
Here is the call graph for this function:
Here is the caller graph for this function: