LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
 All Classes Files Functions Variables Typedefs Macros
ccopy.f
Go to the documentation of this file.
1 *> \brief \b CCOPY
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE CCOPY(N,CX,INCX,CY,INCY)
12 *
13 * .. Scalar Arguments ..
14 * INTEGER INCX,INCY,N
15 * ..
16 * .. Array Arguments ..
17 * COMPLEX CX(*),CY(*)
18 * ..
19 *
20 *
21 *> \par Purpose:
22 * =============
23 *>
24 *> \verbatim
25 *>
26 *> CCOPY copies a vector x to a vector y.
27 *> \endverbatim
28 *
29 * Authors:
30 * ========
31 *
32 *> \author Univ. of Tennessee
33 *> \author Univ. of California Berkeley
34 *> \author Univ. of Colorado Denver
35 *> \author NAG Ltd.
36 *
37 *> \date November 2011
38 *
39 *> \ingroup complex_blas_level1
40 *
41 *> \par Further Details:
42 * =====================
43 *>
44 *> \verbatim
45 *>
46 *> jack dongarra, linpack, 3/11/78.
47 *> modified 12/3/93, array(1) declarations changed to array(*)
48 *> \endverbatim
49 *>
50 * =====================================================================
51  SUBROUTINE ccopy(N,CX,INCX,CY,INCY)
52 *
53 * -- Reference BLAS level1 routine (version 3.4.0) --
54 * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
55 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
56 * November 2011
57 *
58 * .. Scalar Arguments ..
59  INTEGER incx,incy,n
60 * ..
61 * .. Array Arguments ..
62  COMPLEX cx(*),cy(*)
63 * ..
64 *
65 * =====================================================================
66 *
67 * .. Local Scalars ..
68  INTEGER i,ix,iy
69 * ..
70  IF (n.LE.0) RETURN
71  IF (incx.EQ.1 .AND. incy.EQ.1) THEN
72 *
73 * code for both increments equal to 1
74 *
75  DO i = 1,n
76  cy(i) = cx(i)
77  END DO
78  ELSE
79 *
80 * code for unequal increments or equal increments
81 * not equal to 1
82 *
83  ix = 1
84  iy = 1
85  IF (incx.LT.0) ix = (-n+1)*incx + 1
86  IF (incy.LT.0) iy = (-n+1)*incy + 1
87  DO i = 1,n
88  cy(iy) = cx(ix)
89  ix = ix + incx
90  iy = iy + incy
91  END DO
92  END IF
93  RETURN
94  END