LAPACK  3.8.0
LAPACK: Linear Algebra PACKage

◆ dchkqr()

subroutine dchkqr ( logical, dimension( * )  DOTYPE,
integer  NM,
integer, dimension( * )  MVAL,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNB,
integer, dimension( * )  NBVAL,
integer, dimension( * )  NXVAL,
integer  NRHS,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
double precision, dimension( * )  A,
double precision, dimension( * )  AF,
double precision, dimension( * )  AQ,
double precision, dimension( * )  AR,
double precision, dimension( * )  AC,
double precision, dimension( * )  B,
double precision, dimension( * )  X,
double precision, dimension( * )  XACT,
double precision, dimension( * )  TAU,
double precision, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

DCHKQR

Purpose:
 DCHKQR tests DGEQRF, DORGQR and DORMQR.
Parameters
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NM
          NM is INTEGER
          The number of values of M contained in the vector MVAL.
[in]MVAL
          MVAL is INTEGER array, dimension (NM)
          The values of the matrix row dimension M.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix column dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB and NX contained in the
          vectors NBVAL and NXVAL.  The blocking parameters are used
          in pairs (NB,NX).
[in]NBVAL
          NBVAL is INTEGER array, dimension (NNB)
          The values of the blocksize NB.
[in]NXVAL
          NXVAL is INTEGER array, dimension (NNB)
          The values of the crossover point NX.
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors to be generated for
          each linear system.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for M or N, used in dimensioning
          the work arrays.
[out]A
          A is DOUBLE PRECISION array, dimension (NMAX*NMAX)
[out]AF
          AF is DOUBLE PRECISION array, dimension (NMAX*NMAX)
[out]AQ
          AQ is DOUBLE PRECISION array, dimension (NMAX*NMAX)
[out]AR
          AR is DOUBLE PRECISION array, dimension (NMAX*NMAX)
[out]AC
          AC is DOUBLE PRECISION array, dimension (NMAX*NMAX)
[out]B
          B is DOUBLE PRECISION array, dimension (NMAX*NRHS)
[out]X
          X is DOUBLE PRECISION array, dimension (NMAX*NRHS)
[out]XACT
          XACT is DOUBLE PRECISION array, dimension (NMAX*NRHS)
[out]TAU
          TAU is DOUBLE PRECISION array, dimension (NMAX)
[out]WORK
          WORK is DOUBLE PRECISION array, dimension (NMAX*NMAX)
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (NMAX)
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
December 2016

Definition at line 203 of file dchkqr.f.

203 *
204 * -- LAPACK test routine (version 3.7.0) --
205 * -- LAPACK is a software package provided by Univ. of Tennessee, --
206 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
207 * December 2016
208 *
209 * .. Scalar Arguments ..
210  LOGICAL tsterr
211  INTEGER nm, nmax, nn, nnb, nout, nrhs
212  DOUBLE PRECISION thresh
213 * ..
214 * .. Array Arguments ..
215  LOGICAL dotype( * )
216  INTEGER iwork( * ), mval( * ), nbval( * ), nval( * ),
217  $ nxval( * )
218  DOUBLE PRECISION a( * ), ac( * ), af( * ), aq( * ), ar( * ),
219  $ b( * ), rwork( * ), tau( * ), work( * ),
220  $ x( * ), xact( * )
221 * ..
222 *
223 * =====================================================================
224 *
225 * .. Parameters ..
226  INTEGER ntests
227  parameter( ntests = 9 )
228  INTEGER ntypes
229  parameter( ntypes = 8 )
230  DOUBLE PRECISION zero
231  parameter( zero = 0.0d0 )
232 * ..
233 * .. Local Scalars ..
234  CHARACTER dist, type
235  CHARACTER*3 path
236  INTEGER i, ik, im, imat, in, inb, info, k, kl, ku, lda,
237  $ lwork, m, minmn, mode, n, nb, nerrs, nfail, nk,
238  $ nrun, nt, nx
239  DOUBLE PRECISION anorm, cndnum
240 * ..
241 * .. Local Arrays ..
242  INTEGER iseed( 4 ), iseedy( 4 ), kval( 4 )
243  DOUBLE PRECISION result( ntests )
244 * ..
245 * .. External Functions ..
246  LOGICAL dgennd
247  EXTERNAL dgennd
248 * ..
249 * .. External Subroutines ..
250  EXTERNAL alaerh, alahd, alasum, derrqr, dgeqrs, dget02,
253 * ..
254 * .. Intrinsic Functions ..
255  INTRINSIC max, min
256 * ..
257 * .. Scalars in Common ..
258  LOGICAL lerr, ok
259  CHARACTER*32 srnamt
260  INTEGER infot, nunit
261 * ..
262 * .. Common blocks ..
263  COMMON / infoc / infot, nunit, ok, lerr
264  COMMON / srnamc / srnamt
265 * ..
266 * .. Data statements ..
267  DATA iseedy / 1988, 1989, 1990, 1991 /
268 * ..
269 * .. Executable Statements ..
270 *
271 * Initialize constants and the random number seed.
272 *
273  path( 1: 1 ) = 'Double precision'
274  path( 2: 3 ) = 'QR'
275  nrun = 0
276  nfail = 0
277  nerrs = 0
278  DO 10 i = 1, 4
279  iseed( i ) = iseedy( i )
280  10 CONTINUE
281 *
282 * Test the error exits
283 *
284  IF( tsterr )
285  $ CALL derrqr( path, nout )
286  infot = 0
287  CALL xlaenv( 2, 2 )
288 *
289  lda = nmax
290  lwork = nmax*max( nmax, nrhs )
291 *
292 * Do for each value of M in MVAL.
293 *
294  DO 70 im = 1, nm
295  m = mval( im )
296 *
297 * Do for each value of N in NVAL.
298 *
299  DO 60 in = 1, nn
300  n = nval( in )
301  minmn = min( m, n )
302  DO 50 imat = 1, ntypes
303 *
304 * Do the tests only if DOTYPE( IMAT ) is true.
305 *
306  IF( .NOT.dotype( imat ) )
307  $ GO TO 50
308 *
309 * Set up parameters with DLATB4 and generate a test matrix
310 * with DLATMS.
311 *
312  CALL dlatb4( path, imat, m, n, TYPE, kl, ku, anorm, mode,
313  $ cndnum, dist )
314 *
315  srnamt = 'DLATMS'
316  CALL dlatms( m, n, dist, iseed, TYPE, rwork, mode,
317  $ cndnum, anorm, kl, ku, 'No packing', a, lda,
318  $ work, info )
319 *
320 * Check error code from DLATMS.
321 *
322  IF( info.NE.0 ) THEN
323  CALL alaerh( path, 'DLATMS', info, 0, ' ', m, n, -1,
324  $ -1, -1, imat, nfail, nerrs, nout )
325  GO TO 50
326  END IF
327 *
328 * Set some values for K: the first value must be MINMN,
329 * corresponding to the call of DQRT01; other values are
330 * used in the calls of DQRT02, and must not exceed MINMN.
331 *
332  kval( 1 ) = minmn
333  kval( 2 ) = 0
334  kval( 3 ) = 1
335  kval( 4 ) = minmn / 2
336  IF( minmn.EQ.0 ) THEN
337  nk = 1
338  ELSE IF( minmn.EQ.1 ) THEN
339  nk = 2
340  ELSE IF( minmn.LE.3 ) THEN
341  nk = 3
342  ELSE
343  nk = 4
344  END IF
345 *
346 * Do for each value of K in KVAL
347 *
348  DO 40 ik = 1, nk
349  k = kval( ik )
350 *
351 * Do for each pair of values (NB,NX) in NBVAL and NXVAL.
352 *
353  DO 30 inb = 1, nnb
354  nb = nbval( inb )
355  CALL xlaenv( 1, nb )
356  nx = nxval( inb )
357  CALL xlaenv( 3, nx )
358  DO i = 1, ntests
359  result( i ) = zero
360  END DO
361  nt = 2
362  IF( ik.EQ.1 ) THEN
363 *
364 * Test DGEQRF
365 *
366  CALL dqrt01( m, n, a, af, aq, ar, lda, tau,
367  $ work, lwork, rwork, result( 1 ) )
368 
369 *
370 * Test DGEQRFP
371 *
372  CALL dqrt01p( m, n, a, af, aq, ar, lda, tau,
373  $ work, lwork, rwork, result( 8 ) )
374 
375  IF( .NOT. dgennd( m, n, af, lda ) )
376  $ result( 9 ) = 2*thresh
377  nt = nt + 1
378  ELSE IF( m.GE.n ) THEN
379 *
380 * Test DORGQR, using factorization
381 * returned by DQRT01
382 *
383  CALL dqrt02( m, n, k, a, af, aq, ar, lda, tau,
384  $ work, lwork, rwork, result( 1 ) )
385  END IF
386  IF( m.GE.k ) THEN
387 *
388 * Test DORMQR, using factorization returned
389 * by DQRT01
390 *
391  CALL dqrt03( m, n, k, af, ac, ar, aq, lda, tau,
392  $ work, lwork, rwork, result( 3 ) )
393  nt = nt + 4
394 *
395 * If M>=N and K=N, call DGEQRS to solve a system
396 * with NRHS right hand sides and compute the
397 * residual.
398 *
399  IF( k.EQ.n .AND. inb.EQ.1 ) THEN
400 *
401 * Generate a solution and set the right
402 * hand side.
403 *
404  srnamt = 'DLARHS'
405  CALL dlarhs( path, 'New', 'Full',
406  $ 'No transpose', m, n, 0, 0,
407  $ nrhs, a, lda, xact, lda, b, lda,
408  $ iseed, info )
409 *
410  CALL dlacpy( 'Full', m, nrhs, b, lda, x,
411  $ lda )
412  srnamt = 'DGEQRS'
413  CALL dgeqrs( m, n, nrhs, af, lda, tau, x,
414  $ lda, work, lwork, info )
415 *
416 * Check error code from DGEQRS.
417 *
418  IF( info.NE.0 )
419  $ CALL alaerh( path, 'DGEQRS', info, 0, ' ',
420  $ m, n, nrhs, -1, nb, imat,
421  $ nfail, nerrs, nout )
422 *
423  CALL dget02( 'No transpose', m, n, nrhs, a,
424  $ lda, x, lda, b, lda, rwork,
425  $ result( 7 ) )
426  nt = nt + 1
427  END IF
428  END IF
429 *
430 * Print information about the tests that did not
431 * pass the threshold.
432 *
433  DO 20 i = 1, ntests
434  IF( result( i ).GE.thresh ) THEN
435  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
436  $ CALL alahd( nout, path )
437  WRITE( nout, fmt = 9999 )m, n, k, nb, nx,
438  $ imat, i, result( i )
439  nfail = nfail + 1
440  END IF
441  20 CONTINUE
442  nrun = nrun + ntests
443  30 CONTINUE
444  40 CONTINUE
445  50 CONTINUE
446  60 CONTINUE
447  70 CONTINUE
448 *
449 * Print a summary of the results.
450 *
451  CALL alasum( path, nout, nfail, nrun, nerrs )
452 *
453  9999 FORMAT( ' M=', i5, ', N=', i5, ', K=', i5, ', NB=', i4, ', NX=',
454  $ i5, ', type ', i2, ', test(', i2, ')=', g12.5 )
455  RETURN
456 *
457 * End of DCHKQR
458 *
subroutine dlacpy(UPLO, M, N, A, LDA, B, LDB)
DLACPY copies all or part of one two-dimensional array to another.
Definition: dlacpy.f:105
subroutine dlatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
DLATB4
Definition: dlatb4.f:122
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
logical function dgennd(M, N, A, LDA)
DGENND
Definition: dgennd.f:70
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:149
subroutine derrqr(PATH, NUNIT)
DERRQR
Definition: derrqr.f:57
subroutine dlarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
DLARHS
Definition: dlarhs.f:206
subroutine dqrt01p(M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK, RWORK, RESULT)
DQRT01P
Definition: dqrt01p.f:128
subroutine dlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
DLATMS
Definition: dlatms.f:323
subroutine dget02(TRANS, M, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
DGET02
Definition: dget02.f:135
subroutine dqrt01(M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK, RWORK, RESULT)
DQRT01
Definition: dqrt01.f:128
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:83
subroutine dqrt02(M, N, K, A, AF, Q, R, LDA, TAU, WORK, LWORK, RWORK, RESULT)
DQRT02
Definition: dqrt02.f:137
subroutine dgeqrs(M, N, NRHS, A, LDA, TAU, B, LDB, WORK, LWORK, INFO)
DGEQRS
Definition: dgeqrs.f:123
subroutine dqrt03(M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK, RWORK, RESULT)
DQRT03
Definition: dqrt03.f:138
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:75
Here is the call graph for this function:
Here is the caller graph for this function: