LAPACK  3.8.0
LAPACK: Linear Algebra PACKage

◆ serrlqtp()

subroutine serrlqtp ( character*3  PATH,
integer  NUNIT 
)

DERRLQTP

Purpose:
 SERRLQTP tests the error exits for the REAL routines
 that use the LQT decomposition of a triangular-pentagonal matrix.
Parameters
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
December 2016

Definition at line 57 of file serrlqtp.f.

57  IMPLICIT NONE
58 *
59 * -- LAPACK test routine (version 3.7.0) --
60 * -- LAPACK is a software package provided by Univ. of Tennessee, --
61 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
62 * December 2016
63 *
64 * .. Scalar Arguments ..
65  CHARACTER*3 path
66  INTEGER nunit
67 * ..
68 *
69 * =====================================================================
70 *
71 * .. Parameters ..
72  INTEGER nmax
73  parameter( nmax = 2 )
74 * ..
75 * .. Local Scalars ..
76  INTEGER i, info, j
77 * ..
78 * .. Local Arrays ..
79  REAL a( nmax, nmax ), t( nmax, nmax ), w( nmax ),
80  $ b( nmax, nmax ), c( nmax, nmax )
81 * ..
82 * .. External Subroutines ..
83  EXTERNAL alaesm, chkxer, stplqt2, stplqt,
84  $ stpmlqt
85 * ..
86 * .. Scalars in Common ..
87  LOGICAL lerr, ok
88  CHARACTER*32 srnamt
89  INTEGER infot, nout
90 * ..
91 * .. Common blocks ..
92  COMMON / infoc / infot, nout, ok, lerr
93  COMMON / srnamc / srnamt
94 * ..
95 * .. Intrinsic Functions ..
96  INTRINSIC real
97 * ..
98 * .. Executable Statements ..
99 *
100  nout = nunit
101  WRITE( nout, fmt = * )
102 *
103 * Set the variables to innocuous values.
104 *
105  DO j = 1, nmax
106  DO i = 1, nmax
107  a( i, j ) = 1.d0 / REAL( i+j )
108  c( i, j ) = 1.d0 / REAL( i+j )
109  t( i, j ) = 1.d0 / REAL( i+j )
110  END DO
111  w( j ) = 0.0
112  END DO
113  ok = .true.
114 *
115 * Error exits for TPLQT factorization
116 *
117 * STPLQT
118 *
119  srnamt = 'STPLQT'
120  infot = 1
121  CALL stplqt( -1, 1, 0, 1, a, 1, b, 1, t, 1, w, info )
122  CALL chkxer( 'STPLQT', infot, nout, lerr, ok )
123  infot = 2
124  CALL stplqt( 1, -1, 0, 1, a, 1, b, 1, t, 1, w, info )
125  CALL chkxer( 'STPLQT', infot, nout, lerr, ok )
126  infot = 3
127  CALL stplqt( 0, 1, -1, 1, a, 1, b, 1, t, 1, w, info )
128  CALL chkxer( 'STPLQT', infot, nout, lerr, ok )
129  infot = 3
130  CALL stplqt( 0, 1, 1, 1, a, 1, b, 1, t, 1, w, info )
131  CALL chkxer( 'STPLQT', infot, nout, lerr, ok )
132  infot = 4
133  CALL stplqt( 0, 1, 0, 0, a, 1, b, 1, t, 1, w, info )
134  CALL chkxer( 'STPLQT', infot, nout, lerr, ok )
135  infot = 4
136  CALL stplqt( 1, 1, 0, 2, a, 1, b, 1, t, 1, w, info )
137  CALL chkxer( 'STPLQT', infot, nout, lerr, ok )
138  infot = 6
139  CALL stplqt( 2, 1, 0, 2, a, 1, b, 1, t, 1, w, info )
140  CALL chkxer( 'STPLQT', infot, nout, lerr, ok )
141  infot = 8
142  CALL stplqt( 2, 1, 0, 1, a, 2, b, 1, t, 1, w, info )
143  CALL chkxer( 'STPLQT', infot, nout, lerr, ok )
144  infot = 10
145  CALL stplqt( 2, 2, 1, 2, a, 2, b, 2, t, 1, w, info )
146  CALL chkxer( 'STPLQT', infot, nout, lerr, ok )
147 *
148 * STPLQT2
149 *
150  srnamt = 'STPLQT2'
151  infot = 1
152  CALL stplqt2( -1, 0, 0, a, 1, b, 1, t, 1, info )
153  CALL chkxer( 'STPLQT2', infot, nout, lerr, ok )
154  infot = 2
155  CALL stplqt2( 0, -1, 0, a, 1, b, 1, t, 1, info )
156  CALL chkxer( 'STPLQT2', infot, nout, lerr, ok )
157  infot = 3
158  CALL stplqt2( 0, 0, -1, a, 1, b, 1, t, 1, info )
159  CALL chkxer( 'STPLQT2', infot, nout, lerr, ok )
160  infot = 5
161  CALL stplqt2( 2, 2, 0, a, 1, b, 2, t, 2, info )
162  CALL chkxer( 'STPLQT2', infot, nout, lerr, ok )
163  infot = 7
164  CALL stplqt2( 2, 2, 0, a, 2, b, 1, t, 2, info )
165  CALL chkxer( 'STPLQT2', infot, nout, lerr, ok )
166  infot = 9
167  CALL stplqt2( 2, 2, 0, a, 2, b, 2, t, 1, info )
168  CALL chkxer( 'STPLQT2', infot, nout, lerr, ok )
169 *
170 * STPMLQT
171 *
172  srnamt = 'STPMLQT'
173  infot = 1
174  CALL stpmlqt( '/', 'N', 0, 0, 0, 0, 1, a, 1, t, 1, b, 1, c, 1,
175  $ w, info )
176  CALL chkxer( 'STPMLQT', infot, nout, lerr, ok )
177  infot = 2
178  CALL stpmlqt( 'L', '/', 0, 0, 0, 0, 1, a, 1, t, 1, b, 1, c, 1,
179  $ w, info )
180  CALL chkxer( 'STPMLQT', infot, nout, lerr, ok )
181  infot = 3
182  CALL stpmlqt( 'L', 'N', -1, 0, 0, 0, 1, a, 1, t, 1, b, 1, c, 1,
183  $ w, info )
184  CALL chkxer( 'STPMLQT', infot, nout, lerr, ok )
185  infot = 4
186  CALL stpmlqt( 'L', 'N', 0, -1, 0, 0, 1, a, 1, t, 1, b, 1, c, 1,
187  $ w, info )
188  CALL chkxer( 'STPMLQT', infot, nout, lerr, ok )
189  infot = 5
190  CALL stpmlqt( 'L', 'N', 0, 0, -1, 0, 1, a, 1, t, 1, b, 1, c, 1,
191  $ w, info )
192  infot = 6
193  CALL stpmlqt( 'L', 'N', 0, 0, 0, -1, 1, a, 1, t, 1, b, 1, c, 1,
194  $ w, info )
195  CALL chkxer( 'STPMLQT', infot, nout, lerr, ok )
196  infot = 7
197  CALL stpmlqt( 'L', 'N', 0, 0, 0, 0, 0, a, 1, t, 1, b, 1, c, 1,
198  $ w, info )
199  CALL chkxer( 'STPMLQT', infot, nout, lerr, ok )
200  infot = 9
201  CALL stpmlqt( 'R', 'N', 2, 2, 2, 1, 1, a, 1, t, 1, b, 1, c, 1,
202  $ w, info )
203  CALL chkxer( 'STPMLQT', infot, nout, lerr, ok )
204  infot = 11
205  CALL stpmlqt( 'R', 'N', 1, 1, 1, 1, 1, a, 1, t, 0, b, 1, c, 1,
206  $ w, info )
207  CALL chkxer( 'STPMLQT', infot, nout, lerr, ok )
208  infot = 13
209  CALL stpmlqt( 'L', 'N', 1, 1, 1, 1, 1, a, 1, t, 1, b, 0, c, 1,
210  $ w, info )
211  CALL chkxer( 'STPMLQT', infot, nout, lerr, ok )
212  infot = 15
213  CALL stpmlqt( 'L', 'N', 1, 1, 1, 1, 1, a, 1, t, 1, b, 1, c, 0,
214  $ w, info )
215  CALL chkxer( 'STPMLQT', infot, nout, lerr, ok )
216 *
217 * Print a summary line.
218 *
219  CALL alaesm( path, ok, nout )
220 *
221  RETURN
222 *
223 * End of SERRLQT
224 *
subroutine stplqt(M, N, L, MB, A, LDA, B, LDB, T, LDT, WORK, INFO)
STPLQT
Definition: stplqt.f:191
subroutine alaesm(PATH, OK, NOUT)
ALAESM
Definition: alaesm.f:65
subroutine stpmlqt(SIDE, TRANS, M, N, K, L, MB, V, LDV, T, LDT, A, LDA, B, LDB, WORK, INFO)
DTPMLQT
Definition: stpmlqt.f:218
subroutine chkxer(SRNAMT, INFOT, NOUT, LERR, OK)
Definition: cblat2.f:3199
subroutine stplqt2(M, N, L, A, LDA, B, LDB, T, LDT, INFO)
STPLQT2 computes a LQ factorization of a real or complex "triangular-pentagonal" matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q.
Definition: stplqt2.f:179
Here is the call graph for this function:
Here is the caller graph for this function: