 LAPACK  3.10.1 LAPACK: Linear Algebra PACKage

## ◆ dlqt01()

 subroutine dlqt01 ( integer M, integer N, double precision, dimension( lda, * ) A, double precision, dimension( lda, * ) AF, double precision, dimension( lda, * ) Q, double precision, dimension( lda, * ) L, integer LDA, double precision, dimension( * ) TAU, double precision, dimension( lwork ) WORK, integer LWORK, double precision, dimension( * ) RWORK, double precision, dimension( * ) RESULT )

DLQT01

Purpose:
``` DLQT01 tests DGELQF, which computes the LQ factorization of an m-by-n
matrix A, and partially tests DORGLQ which forms the n-by-n
orthogonal matrix Q.

DLQT01 compares L with A*Q', and checks that Q is orthogonal.```
Parameters
 [in] M ``` M is INTEGER The number of rows of the matrix A. M >= 0.``` [in] N ``` N is INTEGER The number of columns of the matrix A. N >= 0.``` [in] A ``` A is DOUBLE PRECISION array, dimension (LDA,N) The m-by-n matrix A.``` [out] AF ``` AF is DOUBLE PRECISION array, dimension (LDA,N) Details of the LQ factorization of A, as returned by DGELQF. See DGELQF for further details.``` [out] Q ``` Q is DOUBLE PRECISION array, dimension (LDA,N) The n-by-n orthogonal matrix Q.``` [out] L ` L is DOUBLE PRECISION array, dimension (LDA,max(M,N))` [in] LDA ``` LDA is INTEGER The leading dimension of the arrays A, AF, Q and L. LDA >= max(M,N).``` [out] TAU ``` TAU is DOUBLE PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors, as returned by DGELQF.``` [out] WORK ` WORK is DOUBLE PRECISION array, dimension (LWORK)` [in] LWORK ``` LWORK is INTEGER The dimension of the array WORK.``` [out] RWORK ` RWORK is DOUBLE PRECISION array, dimension (max(M,N))` [out] RESULT ``` RESULT is DOUBLE PRECISION array, dimension (2) The test ratios: RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS ) RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )```

Definition at line 124 of file dlqt01.f.

126 *
127 * -- LAPACK test routine --
128 * -- LAPACK is a software package provided by Univ. of Tennessee, --
129 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
130 *
131 * .. Scalar Arguments ..
132  INTEGER LDA, LWORK, M, N
133 * ..
134 * .. Array Arguments ..
135  DOUBLE PRECISION A( LDA, * ), AF( LDA, * ), L( LDA, * ),
136  \$ Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
137  \$ WORK( LWORK )
138 * ..
139 *
140 * =====================================================================
141 *
142 * .. Parameters ..
143  DOUBLE PRECISION ZERO, ONE
144  parameter( zero = 0.0d+0, one = 1.0d+0 )
145  DOUBLE PRECISION ROGUE
146  parameter( rogue = -1.0d+10 )
147 * ..
148 * .. Local Scalars ..
149  INTEGER INFO, MINMN
150  DOUBLE PRECISION ANORM, EPS, RESID
151 * ..
152 * .. External Functions ..
153  DOUBLE PRECISION DLAMCH, DLANGE, DLANSY
154  EXTERNAL dlamch, dlange, dlansy
155 * ..
156 * .. External Subroutines ..
157  EXTERNAL dgelqf, dgemm, dlacpy, dlaset, dorglq, dsyrk
158 * ..
159 * .. Intrinsic Functions ..
160  INTRINSIC dble, max, min
161 * ..
162 * .. Scalars in Common ..
163  CHARACTER*32 SRNAMT
164 * ..
165 * .. Common blocks ..
166  COMMON / srnamc / srnamt
167 * ..
168 * .. Executable Statements ..
169 *
170  minmn = min( m, n )
171  eps = dlamch( 'Epsilon' )
172 *
173 * Copy the matrix A to the array AF.
174 *
175  CALL dlacpy( 'Full', m, n, a, lda, af, lda )
176 *
177 * Factorize the matrix A in the array AF.
178 *
179  srnamt = 'DGELQF'
180  CALL dgelqf( m, n, af, lda, tau, work, lwork, info )
181 *
182 * Copy details of Q
183 *
184  CALL dlaset( 'Full', n, n, rogue, rogue, q, lda )
185  IF( n.GT.1 )
186  \$ CALL dlacpy( 'Upper', m, n-1, af( 1, 2 ), lda, q( 1, 2 ), lda )
187 *
188 * Generate the n-by-n matrix Q
189 *
190  srnamt = 'DORGLQ'
191  CALL dorglq( n, n, minmn, q, lda, tau, work, lwork, info )
192 *
193 * Copy L
194 *
195  CALL dlaset( 'Full', m, n, zero, zero, l, lda )
196  CALL dlacpy( 'Lower', m, n, af, lda, l, lda )
197 *
198 * Compute L - A*Q'
199 *
200  CALL dgemm( 'No transpose', 'Transpose', m, n, n, -one, a, lda, q,
201  \$ lda, one, l, lda )
202 *
203 * Compute norm( L - Q'*A ) / ( N * norm(A) * EPS ) .
204 *
205  anorm = dlange( '1', m, n, a, lda, rwork )
206  resid = dlange( '1', m, n, l, lda, rwork )
207  IF( anorm.GT.zero ) THEN
208  result( 1 ) = ( ( resid / dble( max( 1, n ) ) ) / anorm ) / eps
209  ELSE
210  result( 1 ) = zero
211  END IF
212 *
213 * Compute I - Q*Q'
214 *
215  CALL dlaset( 'Full', n, n, zero, one, l, lda )
216  CALL dsyrk( 'Upper', 'No transpose', n, n, -one, q, lda, one, l,
217  \$ lda )
218 *
219 * Compute norm( I - Q*Q' ) / ( N * EPS ) .
220 *
221  resid = dlansy( '1', 'Upper', n, l, lda, rwork )
222 *
223  result( 2 ) = ( resid / dble( max( 1, n ) ) ) / eps
224 *
225  RETURN
226 *
227 * End of DLQT01
228 *
double precision function dlamch(CMACH)
DLAMCH
Definition: dlamch.f:69
subroutine dlacpy(UPLO, M, N, A, LDA, B, LDB)
DLACPY copies all or part of one two-dimensional array to another.
Definition: dlacpy.f:103
subroutine dlaset(UPLO, M, N, ALPHA, BETA, A, LDA)
DLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: dlaset.f:110
subroutine dsyrk(UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC)
DSYRK
Definition: dsyrk.f:169
subroutine dgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
DGEMM
Definition: dgemm.f:187
double precision function dlange(NORM, M, N, A, LDA, WORK)
DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: dlange.f:114
subroutine dgelqf(M, N, A, LDA, TAU, WORK, LWORK, INFO)
DGELQF
Definition: dgelqf.f:143
subroutine dorglq(M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
DORGLQ
Definition: dorglq.f:127
double precision function dlansy(NORM, UPLO, N, A, LDA, WORK)
DLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: dlansy.f:122
Here is the call graph for this function:
Here is the caller graph for this function: