 LAPACK  3.8.0 LAPACK: Linear Algebra PACKage

## ◆ cunbdb1()

 subroutine cunbdb1 ( integer M, integer P, integer Q, complex, dimension(ldx11,*) X11, integer LDX11, complex, dimension(ldx21,*) X21, integer LDX21, real, dimension(*) THETA, real, dimension(*) PHI, complex, dimension(*) TAUP1, complex, dimension(*) TAUP2, complex, dimension(*) TAUQ1, complex, dimension(*) WORK, integer LWORK, integer INFO )

CUNBDB1

Download CUNBDB1 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
``` CUNBDB1 simultaneously bidiagonalizes the blocks of a tall and skinny
matrix X with orthonomal columns:

[ B11 ]
[ X11 ]   [ P1 |    ] [  0  ]
[-----] = [---------] [-----] Q1**T .
[ X21 ]   [    | P2 ] [ B21 ]
[  0  ]

X11 is P-by-Q, and X21 is (M-P)-by-Q. Q must be no larger than P,
M-P, or M-Q. Routines CUNBDB2, CUNBDB3, and CUNBDB4 handle cases in
which Q is not the minimum dimension.

The unitary matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P),
and (M-Q)-by-(M-Q), respectively. They are represented implicitly by
Householder vectors.

B11 and B12 are Q-by-Q bidiagonal matrices represented implicitly by
angles THETA, PHI.```
Parameters
 [in] M ``` M is INTEGER The number of rows X11 plus the number of rows in X21.``` [in] P ``` P is INTEGER The number of rows in X11. 0 <= P <= M.``` [in] Q ``` Q is INTEGER The number of columns in X11 and X21. 0 <= Q <= MIN(P,M-P,M-Q).``` [in,out] X11 ``` X11 is COMPLEX array, dimension (LDX11,Q) On entry, the top block of the matrix X to be reduced. On exit, the columns of tril(X11) specify reflectors for P1 and the rows of triu(X11,1) specify reflectors for Q1.``` [in] LDX11 ``` LDX11 is INTEGER The leading dimension of X11. LDX11 >= P.``` [in,out] X21 ``` X21 is COMPLEX array, dimension (LDX21,Q) On entry, the bottom block of the matrix X to be reduced. On exit, the columns of tril(X21) specify reflectors for P2.``` [in] LDX21 ``` LDX21 is INTEGER The leading dimension of X21. LDX21 >= M-P.``` [out] THETA ``` THETA is REAL array, dimension (Q) The entries of the bidiagonal blocks B11, B21 are defined by THETA and PHI. See Further Details.``` [out] PHI ``` PHI is REAL array, dimension (Q-1) The entries of the bidiagonal blocks B11, B21 are defined by THETA and PHI. See Further Details.``` [out] TAUP1 ``` TAUP1 is COMPLEX array, dimension (P) The scalar factors of the elementary reflectors that define P1.``` [out] TAUP2 ``` TAUP2 is COMPLEX array, dimension (M-P) The scalar factors of the elementary reflectors that define P2.``` [out] TAUQ1 ``` TAUQ1 is COMPLEX array, dimension (Q) The scalar factors of the elementary reflectors that define Q1.``` [out] WORK ` WORK is COMPLEX array, dimension (LWORK)` [in] LWORK ``` LWORK is INTEGER The dimension of the array WORK. LWORK >= M-Q. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.``` [out] INFO ``` INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value.```
Date
July 2012
Further Details:

The upper-bidiagonal blocks B11, B21 are represented implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry in each bidiagonal band is a product of a sine or cosine of a THETA with a sine or cosine of a PHI. See  or CUNCSD for details.

P1, P2, and Q1 are represented as products of elementary reflectors. See CUNCSD2BY1 for details on generating P1, P2, and Q1 using CUNGQR and CUNGLQ.

References:
 Brian D. Sutton. Computing the complete CS decomposition. Numer. Algorithms, 50(1):33-65, 2009.

Definition at line 204 of file cunbdb1.f.

204 *
205 * -- LAPACK computational routine (version 3.7.1) --
206 * -- LAPACK is a software package provided by Univ. of Tennessee, --
207 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
208 * July 2012
209 *
210 * .. Scalar Arguments ..
211  INTEGER info, lwork, m, p, q, ldx11, ldx21
212 * ..
213 * .. Array Arguments ..
214  REAL phi(*), theta(*)
215  COMPLEX taup1(*), taup2(*), tauq1(*), work(*),
216  \$ x11(ldx11,*), x21(ldx21,*)
217 * ..
218 *
219 * ====================================================================
220 *
221 * .. Parameters ..
222  COMPLEX one
223  parameter( one = (1.0e0,0.0e0) )
224 * ..
225 * .. Local Scalars ..
226  REAL c, s
227  INTEGER childinfo, i, ilarf, iorbdb5, llarf, lorbdb5,
228  \$ lworkmin, lworkopt
229  LOGICAL lquery
230 * ..
231 * .. External Subroutines ..
232  EXTERNAL clarf, clarfgp, cunbdb5, csrot, xerbla
233  EXTERNAL clacgv
234 * ..
235 * .. External Functions ..
236  REAL scnrm2
237  EXTERNAL scnrm2
238 * ..
239 * .. Intrinsic Function ..
240  INTRINSIC atan2, cos, max, sin, sqrt
241 * ..
242 * .. Executable Statements ..
243 *
244 * Test input arguments
245 *
246  info = 0
247  lquery = lwork .EQ. -1
248 *
249  IF( m .LT. 0 ) THEN
250  info = -1
251  ELSE IF( p .LT. q .OR. m-p .LT. q ) THEN
252  info = -2
253  ELSE IF( q .LT. 0 .OR. m-q .LT. q ) THEN
254  info = -3
255  ELSE IF( ldx11 .LT. max( 1, p ) ) THEN
256  info = -5
257  ELSE IF( ldx21 .LT. max( 1, m-p ) ) THEN
258  info = -7
259  END IF
260 *
261 * Compute workspace
262 *
263  IF( info .EQ. 0 ) THEN
264  ilarf = 2
265  llarf = max( p-1, m-p-1, q-1 )
266  iorbdb5 = 2
267  lorbdb5 = q-2
268  lworkopt = max( ilarf+llarf-1, iorbdb5+lorbdb5-1 )
269  lworkmin = lworkopt
270  work(1) = lworkopt
271  IF( lwork .LT. lworkmin .AND. .NOT.lquery ) THEN
272  info = -14
273  END IF
274  END IF
275  IF( info .NE. 0 ) THEN
276  CALL xerbla( 'CUNBDB1', -info )
277  RETURN
278  ELSE IF( lquery ) THEN
279  RETURN
280  END IF
281 *
282 * Reduce columns 1, ..., Q of X11 and X21
283 *
284  DO i = 1, q
285 *
286  CALL clarfgp( p-i+1, x11(i,i), x11(i+1,i), 1, taup1(i) )
287  CALL clarfgp( m-p-i+1, x21(i,i), x21(i+1,i), 1, taup2(i) )
288  theta(i) = atan2( REAL( X21(I,I) ), REAL( X11(I,I) ) )
289  c = cos( theta(i) )
290  s = sin( theta(i) )
291  x11(i,i) = one
292  x21(i,i) = one
293  CALL clarf( 'L', p-i+1, q-i, x11(i,i), 1, conjg(taup1(i)),
294  \$ x11(i,i+1), ldx11, work(ilarf) )
295  CALL clarf( 'L', m-p-i+1, q-i, x21(i,i), 1, conjg(taup2(i)),
296  \$ x21(i,i+1), ldx21, work(ilarf) )
297 *
298  IF( i .LT. q ) THEN
299  CALL csrot( q-i, x11(i,i+1), ldx11, x21(i,i+1), ldx21, c,
300  \$ s )
301  CALL clacgv( q-i, x21(i,i+1), ldx21 )
302  CALL clarfgp( q-i, x21(i,i+1), x21(i,i+2), ldx21, tauq1(i) )
303  s = REAL( X21(I,I+1) )
304  x21(i,i+1) = one
305  CALL clarf( 'R', p-i, q-i, x21(i,i+1), ldx21, tauq1(i),
306  \$ x11(i+1,i+1), ldx11, work(ilarf) )
307  CALL clarf( 'R', m-p-i, q-i, x21(i,i+1), ldx21, tauq1(i),
308  \$ x21(i+1,i+1), ldx21, work(ilarf) )
309  CALL clacgv( q-i, x21(i,i+1), ldx21 )
310  c = sqrt( scnrm2( p-i, x11(i+1,i+1), 1 )**2
311  \$ + scnrm2( m-p-i, x21(i+1,i+1), 1 )**2 )
312  phi(i) = atan2( s, c )
313  CALL cunbdb5( p-i, m-p-i, q-i-1, x11(i+1,i+1), 1,
314  \$ x21(i+1,i+1), 1, x11(i+1,i+2), ldx11,
315  \$ x21(i+1,i+2), ldx21, work(iorbdb5), lorbdb5,
316  \$ childinfo )
317  END IF
318 *
319  END DO
320 *
321  RETURN
322 *
323 * End of CUNBDB1
324 *
subroutine cunbdb5(M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2, LDQ2, WORK, LWORK, INFO)
CUNBDB5
Definition: cunbdb5.f:158
subroutine clarfgp(N, ALPHA, X, INCX, TAU)
CLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
Definition: clarfgp.f:106
real function scnrm2(N, X, INCX)
SCNRM2
Definition: scnrm2.f:77
subroutine clarf(SIDE, M, N, V, INCV, TAU, C, LDC, WORK)
CLARF applies an elementary reflector to a general rectangular matrix.
Definition: clarf.f:130
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine clacgv(N, X, INCX)
CLACGV conjugates a complex vector.
Definition: clacgv.f:76
subroutine csrot(N, CX, INCX, CY, INCY, C, S)
CSROT
Definition: csrot.f:100
Here is the call graph for this function:
Here is the caller graph for this function: