LAPACK  3.10.1
LAPACK: Linear Algebra PACKage
lapacke_zgesvdq_work.c
Go to the documentation of this file.
1 /*****************************************************************************
2  Copyright (c) 2014, Intel Corp.
3  All rights reserved.
4 
5  Redistribution and use in source and binary forms, with or without
6  modification, are permitted provided that the following conditions are met:
7 
8  * Redistributions of source code must retain the above copyright notice,
9  this list of conditions and the following disclaimer.
10  * Redistributions in binary form must reproduce the above copyright
11  notice, this list of conditions and the following disclaimer in the
12  documentation and/or other materials provided with the distribution.
13  * Neither the name of Intel Corporation nor the names of its contributors
14  may be used to endorse or promote products derived from this software
15  without specific prior written permission.
16 
17  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  THE POSSIBILITY OF SUCH DAMAGE.
28 *****************************************************************************
29 * Contents: Native middle-level C interface to LAPACK function zgesvdq
30 * Author: Intel Corporation
31 *****************************************************************************/
32 
33 #include "lapacke_utils.h"
34 
35 lapack_int LAPACKE_zgesvdq_work( int matrix_layout, char joba, char jobp,
36  char jobr, char jobu, char jobv,
38  lapack_int lda, double* s, lapack_complex_double* u, lapack_int ldu,
40  lapack_int* iwork, lapack_int liwork,
41  lapack_complex_double* cwork, lapack_int lcwork,
42  double* rwork, lapack_int lrwork )
43 {
44  lapack_int info = 0;
45  if( matrix_layout == LAPACK_COL_MAJOR ) {
46  /* Call LAPACK function and adjust info */
47  LAPACK_zgesvdq( &joba, &jobp, &jobr, &jobu, &jobv, &m, &n, a, &lda, s, u, &ldu, v, &ldv,
48  numrank, iwork, &liwork, cwork, &lcwork, rwork, &lrwork, &info );
49  if( info < 0 ) {
50  info = info - 1;
51  }
52  } else if( matrix_layout == LAPACK_ROW_MAJOR ) {
53  lapack_int nrows_u = ( LAPACKE_lsame( jobu, 'a' ) ||
54  LAPACKE_lsame( jobu, 's' ) ) ? m : 1;
55  lapack_int ncols_u = LAPACKE_lsame( jobu, 'a' ) ? m :
56  (LAPACKE_lsame( jobu, 's' ) ? MIN(m,n) : 1);
57  lapack_int nrows_v = LAPACKE_lsame( jobv, 'a' ) ? n :
58  ( LAPACKE_lsame( jobv, 's' ) ? MIN(m,n) : 1);
59  lapack_int lda_t = MAX(1,m);
60  lapack_int ldu_t = MAX(1,nrows_u);
61  lapack_int ldv_t = MAX(1,nrows_v);
62  lapack_complex_double* a_t = NULL;
63  lapack_complex_double* u_t = NULL;
64  lapack_complex_double* v_t = NULL;
65  /* Check leading dimension(s) */
66  if( lda < n ) {
67  info = -9;
68  LAPACKE_xerbla( "LAPACKE_zgesvdq_work", info );
69  return info;
70  }
71  if( ldu < ncols_u ) {
72  info = -12;
73  LAPACKE_xerbla( "LAPACKE_zgesvdq_work", info );
74  return info;
75  }
76  if( ldv < n ) {
77  info = -14;
78  LAPACKE_xerbla( "LAPACKE_zgesvdq_work", info );
79  return info;
80  }
81  /* Query optimal working array(s) size if requested */
82  if( lcwork == -1 ) {
83  LAPACK_zgesvdq( &joba, &jobp, &jobr, &jobu, &jobv, &m, &n, a, &lda_t,
84  s, u, &ldu_t, v, &ldv_t, numrank, iwork, &liwork,
85  cwork, &lcwork, rwork, &lrwork, &info );
86  return (info < 0) ? (info - 1) : info;
87  }
88  /* Allocate memory for temporary array(s) */
89  a_t = (lapack_complex_double*)LAPACKE_malloc( sizeof(lapack_complex_double) * lda_t * MAX(1,n) );
90  if( a_t == NULL ) {
92  goto exit_level_0;
93  }
94  if( LAPACKE_lsame( jobu, 'a' ) || LAPACKE_lsame( jobu, 's' ) ) {
95  u_t = (lapack_complex_double*)
96  LAPACKE_malloc( sizeof(lapack_complex_double) * ldu_t * MAX(1,ncols_u) );
97  if( u_t == NULL ) {
99  goto exit_level_1;
100  }
101  }
102  if( LAPACKE_lsame( jobv, 'a' ) || LAPACKE_lsame( jobv, 's' ) ) {
103  v_t = (lapack_complex_double*)
104  LAPACKE_malloc( sizeof(lapack_complex_double) * ldv_t * MAX(1,n) );
105  if( v_t == NULL ) {
107  goto exit_level_2;
108  }
109  }
110  /* Transpose input matrices */
111  LAPACKE_zge_trans( matrix_layout, m, n, a, lda, a_t, lda_t );
112  /* Call LAPACK function and adjust info */
113  LAPACK_zgesvdq( &joba, &jobp, &jobr, &jobu, &jobv, &m, &n, a, &lda_t,
114  s, u, &ldu_t, v, &ldv_t, numrank, iwork, &liwork,
115  cwork, &lcwork, rwork, &lrwork, &info );
116  if( info < 0 ) {
117  info = info - 1;
118  }
119  /* Transpose output matrices */
120  LAPACKE_zge_trans( LAPACK_COL_MAJOR, m, n, a_t, lda_t, a, lda );
121  if( LAPACKE_lsame( jobu, 'a' ) || LAPACKE_lsame( jobu, 's' ) ) {
122  LAPACKE_zge_trans( LAPACK_COL_MAJOR, nrows_u, ncols_u, u_t, ldu_t,
123  u, ldu );
124  }
125  if( LAPACKE_lsame( jobv, 'a' ) || LAPACKE_lsame( jobv, 's' ) ) {
126  LAPACKE_zge_trans( LAPACK_COL_MAJOR, nrows_v, n, v_t, ldv_t, v,
127  ldv );
128  }
129  /* Release memory and exit */
130  if( LAPACKE_lsame( jobv, 'a' ) || LAPACKE_lsame( jobv, 's' ) ) {
131  LAPACKE_free( v_t );
132  }
133 exit_level_2:
134  if( LAPACKE_lsame( jobu, 'a' ) || LAPACKE_lsame( jobu, 's' ) ) {
135  LAPACKE_free( u_t );
136  }
137 exit_level_1:
138  LAPACKE_free( a_t );
139 exit_level_0:
140  if( info == LAPACK_TRANSPOSE_MEMORY_ERROR ) {
141  LAPACKE_xerbla( "LAPACKE_zgesvdq_work", info );
142  }
143  } else {
144  info = -1;
145  LAPACKE_xerbla( "LAPACKE_zgesvdq_work", info );
146  }
147  return info;
148 }
#define LAPACK_zgesvdq(...)
Definition: lapack.h:3520
#define lapack_int
Definition: lapack.h:83
#define lapack_complex_double
Definition: lapack.h:63
#define LAPACK_COL_MAJOR
Definition: lapacke.h:53
#define LAPACKE_free(p)
Definition: lapacke.h:46
#define LAPACK_ROW_MAJOR
Definition: lapacke.h:52
#define LAPACKE_malloc(size)
Definition: lapacke.h:43
#define LAPACK_TRANSPOSE_MEMORY_ERROR
Definition: lapacke.h:56
lapack_logical LAPACKE_lsame(char ca, char cb)
Definition: lapacke_lsame.c:35
void LAPACKE_xerbla(const char *name, lapack_int info)
void LAPACKE_zge_trans(int matrix_layout, lapack_int m, lapack_int n, const lapack_complex_double *in, lapack_int ldin, lapack_complex_double *out, lapack_int ldout)
#define MIN(x, y)
Definition: lapacke_utils.h:49
#define MAX(x, y)
Definition: lapacke_utils.h:46
lapack_int LAPACKE_zgesvdq_work(int matrix_layout, char joba, char jobp, char jobr, char jobu, char jobv, lapack_int m, lapack_int n, lapack_complex_double *a, lapack_int lda, double *s, lapack_complex_double *u, lapack_int ldu, lapack_complex_double *v, lapack_int ldv, lapack_int *numrank, lapack_int *iwork, lapack_int liwork, lapack_complex_double *cwork, lapack_int lcwork, double *rwork, lapack_int lrwork)