LAPACK  3.6.0
LAPACK: Linear Algebra PACKage
cdotu.f
Go to the documentation of this file.
1 *> \brief \b CDOTU
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * COMPLEX FUNCTION CDOTU(N,CX,INCX,CY,INCY)
12 *
13 * .. Scalar Arguments ..
14 * INTEGER INCX,INCY,N
15 * ..
16 * .. Array Arguments ..
17 * COMPLEX CX(*),CY(*)
18 * ..
19 *
20 *
21 *> \par Purpose:
22 * =============
23 *>
24 *> \verbatim
25 *>
26 *> CDOTU forms the dot product of two complex vectors
27 *> CDOTU = X^T * Y
28 *>
29 *> \endverbatim
30 *
31 * Authors:
32 * ========
33 *
34 *> \author Univ. of Tennessee
35 *> \author Univ. of California Berkeley
36 *> \author Univ. of Colorado Denver
37 *> \author NAG Ltd.
38 *
39 *> \date November 2015
40 *
41 *> \ingroup complex_blas_level1
42 *
43 *> \par Further Details:
44 * =====================
45 *>
46 *> \verbatim
47 *>
48 *> jack dongarra, linpack, 3/11/78.
49 *> modified 12/3/93, array(1) declarations changed to array(*)
50 *> \endverbatim
51 *>
52 * =====================================================================
53  COMPLEX FUNCTION cdotu(N,CX,INCX,CY,INCY)
54 *
55 * -- Reference BLAS level1 routine (version 3.6.0) --
56 * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
57 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
58 * November 2015
59 *
60 * .. Scalar Arguments ..
61  INTEGER INCX,INCY,N
62 * ..
63 * .. Array Arguments ..
64  COMPLEX CX(*),CY(*)
65 * ..
66 *
67 * =====================================================================
68 *
69 * .. Local Scalars ..
70  COMPLEX CTEMP
71  INTEGER I,IX,IY
72 * ..
73  ctemp = (0.0,0.0)
74  cdotu = (0.0,0.0)
75  IF (n.LE.0) RETURN
76  IF (incx.EQ.1 .AND. incy.EQ.1) THEN
77 *
78 * code for both increments equal to 1
79 *
80  DO i = 1,n
81  ctemp = ctemp + cx(i)*cy(i)
82  END DO
83  ELSE
84 *
85 * code for unequal increments or equal increments
86 * not equal to 1
87 *
88  ix = 1
89  iy = 1
90  IF (incx.LT.0) ix = (-n+1)*incx + 1
91  IF (incy.LT.0) iy = (-n+1)*incy + 1
92  DO i = 1,n
93  ctemp = ctemp + cx(ix)*cy(iy)
94  ix = ix + incx
95  iy = iy + incy
96  END DO
97  END IF
98  cdotu = ctemp
99  RETURN
100  END
complex function cdotu(N, CX, INCX, CY, INCY)
CDOTU
Definition: cdotu.f:54