LAPACK  3.8.0 LAPACK: Linear Algebra PACKage
zhsein.f
Go to the documentation of this file.
1 *> \brief \b ZHSEIN
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhsein.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhsein.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhsein.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE ZHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL,
22 * LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL,
23 * IFAILR, INFO )
24 *
25 * .. Scalar Arguments ..
26 * CHARACTER EIGSRC, INITV, SIDE
27 * INTEGER INFO, LDH, LDVL, LDVR, M, MM, N
28 * ..
29 * .. Array Arguments ..
30 * LOGICAL SELECT( * )
31 * INTEGER IFAILL( * ), IFAILR( * )
32 * DOUBLE PRECISION RWORK( * )
33 * COMPLEX*16 H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ),
34 * \$ W( * ), WORK( * )
35 * ..
36 *
37 *
38 *> \par Purpose:
39 * =============
40 *>
41 *> \verbatim
42 *>
43 *> ZHSEIN uses inverse iteration to find specified right and/or left
44 *> eigenvectors of a complex upper Hessenberg matrix H.
45 *>
46 *> The right eigenvector x and the left eigenvector y of the matrix H
47 *> corresponding to an eigenvalue w are defined by:
48 *>
49 *> H * x = w * x, y**h * H = w * y**h
50 *>
51 *> where y**h denotes the conjugate transpose of the vector y.
52 *> \endverbatim
53 *
54 * Arguments:
55 * ==========
56 *
57 *> \param[in] SIDE
58 *> \verbatim
59 *> SIDE is CHARACTER*1
60 *> = 'R': compute right eigenvectors only;
61 *> = 'L': compute left eigenvectors only;
62 *> = 'B': compute both right and left eigenvectors.
63 *> \endverbatim
64 *>
65 *> \param[in] EIGSRC
66 *> \verbatim
67 *> EIGSRC is CHARACTER*1
68 *> Specifies the source of eigenvalues supplied in W:
69 *> = 'Q': the eigenvalues were found using ZHSEQR; thus, if
70 *> H has zero subdiagonal elements, and so is
71 *> block-triangular, then the j-th eigenvalue can be
72 *> assumed to be an eigenvalue of the block containing
73 *> the j-th row/column. This property allows ZHSEIN to
74 *> perform inverse iteration on just one diagonal block.
75 *> = 'N': no assumptions are made on the correspondence
76 *> between eigenvalues and diagonal blocks. In this
77 *> case, ZHSEIN must always perform inverse iteration
78 *> using the whole matrix H.
79 *> \endverbatim
80 *>
81 *> \param[in] INITV
82 *> \verbatim
83 *> INITV is CHARACTER*1
84 *> = 'N': no initial vectors are supplied;
85 *> = 'U': user-supplied initial vectors are stored in the arrays
86 *> VL and/or VR.
87 *> \endverbatim
88 *>
89 *> \param[in] SELECT
90 *> \verbatim
91 *> SELECT is LOGICAL array, dimension (N)
92 *> Specifies the eigenvectors to be computed. To select the
93 *> eigenvector corresponding to the eigenvalue W(j),
94 *> SELECT(j) must be set to .TRUE..
95 *> \endverbatim
96 *>
97 *> \param[in] N
98 *> \verbatim
99 *> N is INTEGER
100 *> The order of the matrix H. N >= 0.
101 *> \endverbatim
102 *>
103 *> \param[in] H
104 *> \verbatim
105 *> H is COMPLEX*16 array, dimension (LDH,N)
106 *> The upper Hessenberg matrix H.
107 *> If a NaN is detected in H, the routine will return with INFO=-6.
108 *> \endverbatim
109 *>
110 *> \param[in] LDH
111 *> \verbatim
112 *> LDH is INTEGER
113 *> The leading dimension of the array H. LDH >= max(1,N).
114 *> \endverbatim
115 *>
116 *> \param[in,out] W
117 *> \verbatim
118 *> W is COMPLEX*16 array, dimension (N)
119 *> On entry, the eigenvalues of H.
120 *> On exit, the real parts of W may have been altered since
121 *> close eigenvalues are perturbed slightly in searching for
122 *> independent eigenvectors.
123 *> \endverbatim
124 *>
125 *> \param[in,out] VL
126 *> \verbatim
127 *> VL is COMPLEX*16 array, dimension (LDVL,MM)
128 *> On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must
129 *> contain starting vectors for the inverse iteration for the
130 *> left eigenvectors; the starting vector for each eigenvector
131 *> must be in the same column in which the eigenvector will be
132 *> stored.
133 *> On exit, if SIDE = 'L' or 'B', the left eigenvectors
134 *> specified by SELECT will be stored consecutively in the
135 *> columns of VL, in the same order as their eigenvalues.
136 *> If SIDE = 'R', VL is not referenced.
137 *> \endverbatim
138 *>
139 *> \param[in] LDVL
140 *> \verbatim
141 *> LDVL is INTEGER
142 *> The leading dimension of the array VL.
143 *> LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
144 *> \endverbatim
145 *>
146 *> \param[in,out] VR
147 *> \verbatim
148 *> VR is COMPLEX*16 array, dimension (LDVR,MM)
149 *> On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must
150 *> contain starting vectors for the inverse iteration for the
151 *> right eigenvectors; the starting vector for each eigenvector
152 *> must be in the same column in which the eigenvector will be
153 *> stored.
154 *> On exit, if SIDE = 'R' or 'B', the right eigenvectors
155 *> specified by SELECT will be stored consecutively in the
156 *> columns of VR, in the same order as their eigenvalues.
157 *> If SIDE = 'L', VR is not referenced.
158 *> \endverbatim
159 *>
160 *> \param[in] LDVR
161 *> \verbatim
162 *> LDVR is INTEGER
163 *> The leading dimension of the array VR.
164 *> LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
165 *> \endverbatim
166 *>
167 *> \param[in] MM
168 *> \verbatim
169 *> MM is INTEGER
170 *> The number of columns in the arrays VL and/or VR. MM >= M.
171 *> \endverbatim
172 *>
173 *> \param[out] M
174 *> \verbatim
175 *> M is INTEGER
176 *> The number of columns in the arrays VL and/or VR required to
177 *> store the eigenvectors (= the number of .TRUE. elements in
178 *> SELECT).
179 *> \endverbatim
180 *>
181 *> \param[out] WORK
182 *> \verbatim
183 *> WORK is COMPLEX*16 array, dimension (N*N)
184 *> \endverbatim
185 *>
186 *> \param[out] RWORK
187 *> \verbatim
188 *> RWORK is DOUBLE PRECISION array, dimension (N)
189 *> \endverbatim
190 *>
191 *> \param[out] IFAILL
192 *> \verbatim
193 *> IFAILL is INTEGER array, dimension (MM)
194 *> If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left
195 *> eigenvector in the i-th column of VL (corresponding to the
196 *> eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the
197 *> eigenvector converged satisfactorily.
198 *> If SIDE = 'R', IFAILL is not referenced.
199 *> \endverbatim
200 *>
201 *> \param[out] IFAILR
202 *> \verbatim
203 *> IFAILR is INTEGER array, dimension (MM)
204 *> If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right
205 *> eigenvector in the i-th column of VR (corresponding to the
206 *> eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the
207 *> eigenvector converged satisfactorily.
208 *> If SIDE = 'L', IFAILR is not referenced.
209 *> \endverbatim
210 *>
211 *> \param[out] INFO
212 *> \verbatim
213 *> INFO is INTEGER
214 *> = 0: successful exit
215 *> < 0: if INFO = -i, the i-th argument had an illegal value
216 *> > 0: if INFO = i, i is the number of eigenvectors which
217 *> failed to converge; see IFAILL and IFAILR for further
218 *> details.
219 *> \endverbatim
220 *
221 * Authors:
222 * ========
223 *
224 *> \author Univ. of Tennessee
225 *> \author Univ. of California Berkeley
226 *> \author Univ. of Colorado Denver
227 *> \author NAG Ltd.
228 *
229 *> \date December 2016
230 *
231 *> \ingroup complex16OTHERcomputational
232 *
233 *> \par Further Details:
234 * =====================
235 *>
236 *> \verbatim
237 *>
238 *> Each eigenvector is normalized so that the element of largest
239 *> magnitude has magnitude 1; here the magnitude of a complex number
240 *> (x,y) is taken to be |x|+|y|.
241 *> \endverbatim
242 *>
243 * =====================================================================
244  SUBROUTINE zhsein( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL,
245  \$ LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL,
246  \$ IFAILR, INFO )
247 *
248 * -- LAPACK computational routine (version 3.7.0) --
249 * -- LAPACK is a software package provided by Univ. of Tennessee, --
250 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
251 * December 2016
252 *
253 * .. Scalar Arguments ..
254  CHARACTER EIGSRC, INITV, SIDE
255  INTEGER INFO, LDH, LDVL, LDVR, M, MM, N
256 * ..
257 * .. Array Arguments ..
258  LOGICAL SELECT( * )
259  INTEGER IFAILL( * ), IFAILR( * )
260  DOUBLE PRECISION RWORK( * )
261  COMPLEX*16 H( ldh, * ), VL( ldvl, * ), VR( ldvr, * ),
262  \$ w( * ), work( * )
263 * ..
264 *
265 * =====================================================================
266 *
267 * .. Parameters ..
268  COMPLEX*16 ZERO
269  parameter( zero = ( 0.0d+0, 0.0d+0 ) )
270  DOUBLE PRECISION RZERO
271  parameter( rzero = 0.0d+0 )
272 * ..
273 * .. Local Scalars ..
274  LOGICAL BOTHV, FROMQR, LEFTV, NOINIT, RIGHTV
275  INTEGER I, IINFO, K, KL, KLN, KR, KS, LDWORK
276  DOUBLE PRECISION EPS3, HNORM, SMLNUM, ULP, UNFL
277  COMPLEX*16 CDUM, WK
278 * ..
279 * .. External Functions ..
280  LOGICAL LSAME, DISNAN
281  DOUBLE PRECISION DLAMCH, ZLANHS
282  EXTERNAL lsame, dlamch, zlanhs, disnan
283 * ..
284 * .. External Subroutines ..
285  EXTERNAL xerbla, zlaein
286 * ..
287 * .. Intrinsic Functions ..
288  INTRINSIC abs, dble, dimag, max
289 * ..
290 * .. Statement Functions ..
291  DOUBLE PRECISION CABS1
292 * ..
293 * .. Statement Function definitions ..
294  cabs1( cdum ) = abs( dble( cdum ) ) + abs( dimag( cdum ) )
295 * ..
296 * .. Executable Statements ..
297 *
298 * Decode and test the input parameters.
299 *
300  bothv = lsame( side, 'B' )
301  rightv = lsame( side, 'R' ) .OR. bothv
302  leftv = lsame( side, 'L' ) .OR. bothv
303 *
304  fromqr = lsame( eigsrc, 'Q' )
305 *
306  noinit = lsame( initv, 'N' )
307 *
308 * Set M to the number of columns required to store the selected
309 * eigenvectors.
310 *
311  m = 0
312  DO 10 k = 1, n
313  IF( SELECT( k ) )
314  \$ m = m + 1
315  10 CONTINUE
316 *
317  info = 0
318  IF( .NOT.rightv .AND. .NOT.leftv ) THEN
319  info = -1
320  ELSE IF( .NOT.fromqr .AND. .NOT.lsame( eigsrc, 'N' ) ) THEN
321  info = -2
322  ELSE IF( .NOT.noinit .AND. .NOT.lsame( initv, 'U' ) ) THEN
323  info = -3
324  ELSE IF( n.LT.0 ) THEN
325  info = -5
326  ELSE IF( ldh.LT.max( 1, n ) ) THEN
327  info = -7
328  ELSE IF( ldvl.LT.1 .OR. ( leftv .AND. ldvl.LT.n ) ) THEN
329  info = -10
330  ELSE IF( ldvr.LT.1 .OR. ( rightv .AND. ldvr.LT.n ) ) THEN
331  info = -12
332  ELSE IF( mm.LT.m ) THEN
333  info = -13
334  END IF
335  IF( info.NE.0 ) THEN
336  CALL xerbla( 'ZHSEIN', -info )
337  RETURN
338  END IF
339 *
340 * Quick return if possible.
341 *
342  IF( n.EQ.0 )
343  \$ RETURN
344 *
345 * Set machine-dependent constants.
346 *
347  unfl = dlamch( 'Safe minimum' )
348  ulp = dlamch( 'Precision' )
349  smlnum = unfl*( n / ulp )
350 *
351  ldwork = n
352 *
353  kl = 1
354  kln = 0
355  IF( fromqr ) THEN
356  kr = 0
357  ELSE
358  kr = n
359  END IF
360  ks = 1
361 *
362  DO 100 k = 1, n
363  IF( SELECT( k ) ) THEN
364 *
365 * Compute eigenvector(s) corresponding to W(K).
366 *
367  IF( fromqr ) THEN
368 *
369 * If affiliation of eigenvalues is known, check whether
370 * the matrix splits.
371 *
372 * Determine KL and KR such that 1 <= KL <= K <= KR <= N
373 * and H(KL,KL-1) and H(KR+1,KR) are zero (or KL = 1 or
374 * KR = N).
375 *
376 * Then inverse iteration can be performed with the
377 * submatrix H(KL:N,KL:N) for a left eigenvector, and with
378 * the submatrix H(1:KR,1:KR) for a right eigenvector.
379 *
380  DO 20 i = k, kl + 1, -1
381  IF( h( i, i-1 ).EQ.zero )
382  \$ GO TO 30
383  20 CONTINUE
384  30 CONTINUE
385  kl = i
386  IF( k.GT.kr ) THEN
387  DO 40 i = k, n - 1
388  IF( h( i+1, i ).EQ.zero )
389  \$ GO TO 50
390  40 CONTINUE
391  50 CONTINUE
392  kr = i
393  END IF
394  END IF
395 *
396  IF( kl.NE.kln ) THEN
397  kln = kl
398 *
399 * Compute infinity-norm of submatrix H(KL:KR,KL:KR) if it
400 * has not ben computed before.
401 *
402  hnorm = zlanhs( 'I', kr-kl+1, h( kl, kl ), ldh, rwork )
403  IF( disnan( hnorm ) ) THEN
404  info = -6
405  RETURN
406  ELSE IF( hnorm.GT.rzero ) THEN
407  eps3 = hnorm*ulp
408  ELSE
409  eps3 = smlnum
410  END IF
411  END IF
412 *
413 * Perturb eigenvalue if it is close to any previous
414 * selected eigenvalues affiliated to the submatrix
415 * H(KL:KR,KL:KR). Close roots are modified by EPS3.
416 *
417  wk = w( k )
418  60 CONTINUE
419  DO 70 i = k - 1, kl, -1
420  IF( SELECT( i ) .AND. cabs1( w( i )-wk ).LT.eps3 ) THEN
421  wk = wk + eps3
422  GO TO 60
423  END IF
424  70 CONTINUE
425  w( k ) = wk
426 *
427  IF( leftv ) THEN
428 *
429 * Compute left eigenvector.
430 *
431  CALL zlaein( .false., noinit, n-kl+1, h( kl, kl ), ldh,
432  \$ wk, vl( kl, ks ), work, ldwork, rwork, eps3,
433  \$ smlnum, iinfo )
434  IF( iinfo.GT.0 ) THEN
435  info = info + 1
436  ifaill( ks ) = k
437  ELSE
438  ifaill( ks ) = 0
439  END IF
440  DO 80 i = 1, kl - 1
441  vl( i, ks ) = zero
442  80 CONTINUE
443  END IF
444  IF( rightv ) THEN
445 *
446 * Compute right eigenvector.
447 *
448  CALL zlaein( .true., noinit, kr, h, ldh, wk, vr( 1, ks ),
449  \$ work, ldwork, rwork, eps3, smlnum, iinfo )
450  IF( iinfo.GT.0 ) THEN
451  info = info + 1
452  ifailr( ks ) = k
453  ELSE
454  ifailr( ks ) = 0
455  END IF
456  DO 90 i = kr + 1, n
457  vr( i, ks ) = zero
458  90 CONTINUE
459  END IF
460  ks = ks + 1
461  END IF
462  100 CONTINUE
463 *
464  RETURN
465 *
466 * End of ZHSEIN
467 *
468  END
subroutine zhsein(SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL, LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL, IFAILR, INFO)
ZHSEIN
Definition: zhsein.f:247
subroutine zlaein(RIGHTV, NOINIT, N, H, LDH, W, V, B, LDB, RWORK, EPS3, SMLNUM, INFO)
ZLAEIN computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse iterat...
Definition: zlaein.f:151
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62