LAPACK  3.8.0
LAPACK: Linear Algebra PACKage

◆ dgesv()

subroutine dgesv ( integer  N,
integer  NRHS,
double precision, dimension( lda, * )  A,
integer  LDA,
integer, dimension( * )  IPIV,
double precision, dimension( ldb, * )  B,
integer  LDB,
integer  INFO 
)

DGESV computes the solution to system of linear equations A * X = B for GE matrices

Download DGESV + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DGESV computes the solution to a real system of linear equations
    A * X = B,
 where A is an N-by-N matrix and X and B are N-by-NRHS matrices.

 The LU decomposition with partial pivoting and row interchanges is
 used to factor A as
    A = P * L * U,
 where P is a permutation matrix, L is unit lower triangular, and U is
 upper triangular.  The factored form of A is then used to solve the
 system of equations A * X = B.
Parameters
[in]N
          N is INTEGER
          The number of linear equations, i.e., the order of the
          matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.
[in,out]A
          A is DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the N-by-N coefficient matrix A.
          On exit, the factors L and U from the factorization
          A = P*L*U; the unit diagonal elements of L are not stored.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[out]IPIV
          IPIV is INTEGER array, dimension (N)
          The pivot indices that define the permutation matrix P;
          row i of the matrix was interchanged with row IPIV(i).
[in,out]B
          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
          On entry, the N-by-NRHS matrix of right hand side matrix B.
          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, U(i,i) is exactly zero.  The factorization
                has been completed, but the factor U is exactly
                singular, so the solution could not be computed.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
December 2016

Definition at line 124 of file dgesv.f.

124 *
125 * -- LAPACK driver routine (version 3.7.0) --
126 * -- LAPACK is a software package provided by Univ. of Tennessee, --
127 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
128 * December 2016
129 *
130 * .. Scalar Arguments ..
131  INTEGER info, lda, ldb, n, nrhs
132 * ..
133 * .. Array Arguments ..
134  INTEGER ipiv( * )
135  DOUBLE PRECISION a( lda, * ), b( ldb, * )
136 * ..
137 *
138 * =====================================================================
139 *
140 * .. External Subroutines ..
141  EXTERNAL dgetrf, dgetrs, xerbla
142 * ..
143 * .. Intrinsic Functions ..
144  INTRINSIC max
145 * ..
146 * .. Executable Statements ..
147 *
148 * Test the input parameters.
149 *
150  info = 0
151  IF( n.LT.0 ) THEN
152  info = -1
153  ELSE IF( nrhs.LT.0 ) THEN
154  info = -2
155  ELSE IF( lda.LT.max( 1, n ) ) THEN
156  info = -4
157  ELSE IF( ldb.LT.max( 1, n ) ) THEN
158  info = -7
159  END IF
160  IF( info.NE.0 ) THEN
161  CALL xerbla( 'DGESV ', -info )
162  RETURN
163  END IF
164 *
165 * Compute the LU factorization of A.
166 *
167  CALL dgetrf( n, n, a, lda, ipiv, info )
168  IF( info.EQ.0 ) THEN
169 *
170 * Solve the system A*X = B, overwriting B with X.
171 *
172  CALL dgetrs( 'No transpose', n, nrhs, a, lda, ipiv, b, ldb,
173  $ info )
174  END IF
175  RETURN
176 *
177 * End of DGESV
178 *
subroutine dgetrf(M, N, A, LDA, IPIV, INFO)
DGETRF
Definition: dgetrf.f:110
subroutine dgetrs(TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
DGETRS
Definition: dgetrs.f:123
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
Here is the call graph for this function:
Here is the caller graph for this function: