 LAPACK  3.9.0 LAPACK: Linear Algebra PACKage

## ◆ cpoequb()

 subroutine cpoequb ( integer N, complex, dimension( lda, * ) A, integer LDA, real, dimension( * ) S, real SCOND, real AMAX, integer INFO )

CPOEQUB

Purpose:
``` CPOEQUB computes row and column scalings intended to equilibrate a
Hermitian positive definite matrix A and reduce its condition number
(with respect to the two-norm).  S contains the scale factors,
S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal.  This
choice of S puts the condition number of B within a factor N of the
smallest possible condition number over all possible diagonal
scalings.

This routine differs from CPOEQU by restricting the scaling factors
to a power of the radix.  Barring over- and underflow, scaling by
these factors introduces no additional rounding errors.  However, the
scaled diagonal entries are no longer approximately 1 but lie
Parameters
 [in] N ``` N is INTEGER The order of the matrix A. N >= 0.``` [in] A ``` A is COMPLEX array, dimension (LDA,N) The N-by-N Hermitian positive definite matrix whose scaling factors are to be computed. Only the diagonal elements of A are referenced.``` [in] LDA ``` LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).``` [out] S ``` S is REAL array, dimension (N) If INFO = 0, S contains the scale factors for A.``` [out] SCOND ``` SCOND is REAL If INFO = 0, S contains the ratio of the smallest S(i) to the largest S(i). If SCOND >= 0.1 and AMAX is neither too large nor too small, it is not worth scaling by S.``` [out] AMAX ``` AMAX is REAL Absolute value of largest matrix element. If AMAX is very close to overflow or very close to underflow, the matrix should be scaled.``` [out] INFO ``` INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the i-th diagonal element is nonpositive.```
Date
December 2016

Definition at line 121 of file cpoequb.f.

121 *
122 * -- LAPACK computational routine (version 3.7.0) --
123 * -- LAPACK is a software package provided by Univ. of Tennessee, --
124 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
125 * December 2016
126 *
127 * .. Scalar Arguments ..
128  INTEGER INFO, LDA, N
129  REAL AMAX, SCOND
130 * ..
131 * .. Array Arguments ..
132  COMPLEX A( LDA, * )
133  REAL S( * )
134 * ..
135 *
136 * =====================================================================
137 *
138 * .. Parameters ..
139  REAL ZERO, ONE
140  parameter( zero = 0.0e+0, one = 1.0e+0 )
141 * ..
142 * .. Local Scalars ..
143  INTEGER I
144  REAL SMIN, BASE, TMP
145 * ..
146 * .. External Functions ..
147  REAL SLAMCH
148  EXTERNAL slamch
149 * ..
150 * .. External Subroutines ..
151  EXTERNAL xerbla
152 * ..
153 * .. Intrinsic Functions ..
154  INTRINSIC max, min, sqrt, log, int
155 * ..
156 * .. Executable Statements ..
157 *
158 * Test the input parameters.
159 *
160 * Positive definite only performs 1 pass of equilibration.
161 *
162  info = 0
163  IF( n.LT.0 ) THEN
164  info = -1
165  ELSE IF( lda.LT.max( 1, n ) ) THEN
166  info = -3
167  END IF
168  IF( info.NE.0 ) THEN
169  CALL xerbla( 'CPOEQUB', -info )
170  RETURN
171  END IF
172 *
173 * Quick return if possible.
174 *
175  IF( n.EQ.0 ) THEN
176  scond = one
177  amax = zero
178  RETURN
179  END IF
180
181  base = slamch( 'B' )
182  tmp = -0.5 / log( base )
183 *
184 * Find the minimum and maximum diagonal elements.
185 *
186  s( 1 ) = a( 1, 1 )
187  smin = s( 1 )
188  amax = s( 1 )
189  DO 10 i = 2, n
190  s( i ) = a( i, i )
191  smin = min( smin, s( i ) )
192  amax = max( amax, s( i ) )
193  10 CONTINUE
194 *
195  IF( smin.LE.zero ) THEN
196 *
197 * Find the first non-positive diagonal element and return.
198 *
199  DO 20 i = 1, n
200  IF( s( i ).LE.zero ) THEN
201  info = i
202  RETURN
203  END IF
204  20 CONTINUE
205  ELSE
206 *
207 * Set the scale factors to the reciprocals
208 * of the diagonal elements.
209 *
210  DO 30 i = 1, n
211  s( i ) = base ** int( tmp * log( s( i ) ) )
212  30 CONTINUE
213 *
214 * Compute SCOND = min(S(I)) / max(S(I)).
215 *
216  scond = sqrt( smin ) / sqrt( amax )
217  END IF
218 *
219  RETURN
220 *
221 * End of CPOEQUB
222 *
Here is the call graph for this function:
Here is the caller graph for this function:
xerbla
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
slamch
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:70