 LAPACK  3.10.0 LAPACK: Linear Algebra PACKage

◆ ssbt21()

 subroutine ssbt21 ( character UPLO, integer N, integer KA, integer KS, real, dimension( lda, * ) A, integer LDA, real, dimension( * ) D, real, dimension( * ) E, real, dimension( ldu, * ) U, integer LDU, real, dimension( * ) WORK, real, dimension( 2 ) RESULT )

SSBT21

Purpose:
SSBT21  generally checks a decomposition of the form

A = U S U**T

where **T means transpose, A is symmetric banded, U is
orthogonal, and S is diagonal (if KS=0) or symmetric
tridiagonal (if KS=1).

Specifically:

RESULT(1) = | A - U S U**T | / ( |A| n ulp ) and
RESULT(2) = | I - U U**T | / ( n ulp )
Parameters
 [in] UPLO UPLO is CHARACTER If UPLO='U', the upper triangle of A and V will be used and the (strictly) lower triangle will not be referenced. If UPLO='L', the lower triangle of A and V will be used and the (strictly) upper triangle will not be referenced. [in] N N is INTEGER The size of the matrix. If it is zero, SSBT21 does nothing. It must be at least zero. [in] KA KA is INTEGER The bandwidth of the matrix A. It must be at least zero. If it is larger than N-1, then max( 0, N-1 ) will be used. [in] KS KS is INTEGER The bandwidth of the matrix S. It may only be zero or one. If zero, then S is diagonal, and E is not referenced. If one, then S is symmetric tri-diagonal. [in] A A is REAL array, dimension (LDA, N) The original (unfactored) matrix. It is assumed to be symmetric, and only the upper (UPLO='U') or only the lower (UPLO='L') will be referenced. [in] LDA LDA is INTEGER The leading dimension of A. It must be at least 1 and at least min( KA, N-1 ). [in] D D is REAL array, dimension (N) The diagonal of the (symmetric tri-) diagonal matrix S. [in] E E is REAL array, dimension (N-1) The off-diagonal of the (symmetric tri-) diagonal matrix S. E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and (3,2) element, etc. Not referenced if KS=0. [in] U U is REAL array, dimension (LDU, N) The orthogonal matrix in the decomposition, expressed as a dense matrix (i.e., not as a product of Householder transformations, Givens transformations, etc.) [in] LDU LDU is INTEGER The leading dimension of U. LDU must be at least N and at least 1. [out] WORK WORK is REAL array, dimension (N**2+N) [out] RESULT RESULT is REAL array, dimension (2) The values computed by the two tests described above. The values are currently limited to 1/ulp, to avoid overflow.

Definition at line 145 of file ssbt21.f.

147 *
148 * -- LAPACK test routine --
149 * -- LAPACK is a software package provided by Univ. of Tennessee, --
150 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
151 *
152 * .. Scalar Arguments ..
153  CHARACTER UPLO
154  INTEGER KA, KS, LDA, LDU, N
155 * ..
156 * .. Array Arguments ..
157  REAL A( LDA, * ), D( * ), E( * ), RESULT( 2 ),
158  \$ U( LDU, * ), WORK( * )
159 * ..
160 *
161 * =====================================================================
162 *
163 * .. Parameters ..
164  REAL ZERO, ONE
165  parameter( zero = 0.0e0, one = 1.0e0 )
166 * ..
167 * .. Local Scalars ..
168  LOGICAL LOWER
169  CHARACTER CUPLO
170  INTEGER IKA, J, JC, JR, LW
171  REAL ANORM, ULP, UNFL, WNORM
172 * ..
173 * .. External Functions ..
174  LOGICAL LSAME
175  REAL SLAMCH, SLANGE, SLANSB, SLANSP
176  EXTERNAL lsame, slamch, slange, slansb, slansp
177 * ..
178 * .. External Subroutines ..
179  EXTERNAL sgemm, sspr, sspr2
180 * ..
181 * .. Intrinsic Functions ..
182  INTRINSIC max, min, real
183 * ..
184 * .. Executable Statements ..
185 *
186 * Constants
187 *
188  result( 1 ) = zero
189  result( 2 ) = zero
190  IF( n.LE.0 )
191  \$ RETURN
192 *
193  ika = max( 0, min( n-1, ka ) )
194  lw = ( n*( n+1 ) ) / 2
195 *
196  IF( lsame( uplo, 'U' ) ) THEN
197  lower = .false.
198  cuplo = 'U'
199  ELSE
200  lower = .true.
201  cuplo = 'L'
202  END IF
203 *
204  unfl = slamch( 'Safe minimum' )
205  ulp = slamch( 'Epsilon' )*slamch( 'Base' )
206 *
207 * Some Error Checks
208 *
209 * Do Test 1
210 *
211 * Norm of A:
212 *
213  anorm = max( slansb( '1', cuplo, n, ika, a, lda, work ), unfl )
214 *
215 * Compute error matrix: Error = A - U S U**T
216 *
217 * Copy A from SB to SP storage format.
218 *
219  j = 0
220  DO 50 jc = 1, n
221  IF( lower ) THEN
222  DO 10 jr = 1, min( ika+1, n+1-jc )
223  j = j + 1
224  work( j ) = a( jr, jc )
225  10 CONTINUE
226  DO 20 jr = ika + 2, n + 1 - jc
227  j = j + 1
228  work( j ) = zero
229  20 CONTINUE
230  ELSE
231  DO 30 jr = ika + 2, jc
232  j = j + 1
233  work( j ) = zero
234  30 CONTINUE
235  DO 40 jr = min( ika, jc-1 ), 0, -1
236  j = j + 1
237  work( j ) = a( ika+1-jr, jc )
238  40 CONTINUE
239  END IF
240  50 CONTINUE
241 *
242  DO 60 j = 1, n
243  CALL sspr( cuplo, n, -d( j ), u( 1, j ), 1, work )
244  60 CONTINUE
245 *
246  IF( n.GT.1 .AND. ks.EQ.1 ) THEN
247  DO 70 j = 1, n - 1
248  CALL sspr2( cuplo, n, -e( j ), u( 1, j ), 1, u( 1, j+1 ), 1,
249  \$ work )
250  70 CONTINUE
251  END IF
252  wnorm = slansp( '1', cuplo, n, work, work( lw+1 ) )
253 *
254  IF( anorm.GT.wnorm ) THEN
255  result( 1 ) = ( wnorm / anorm ) / ( n*ulp )
256  ELSE
257  IF( anorm.LT.one ) THEN
258  result( 1 ) = ( min( wnorm, n*anorm ) / anorm ) / ( n*ulp )
259  ELSE
260  result( 1 ) = min( wnorm / anorm, real( n ) ) / ( n*ulp )
261  END IF
262  END IF
263 *
264 * Do Test 2
265 *
266 * Compute U U**T - I
267 *
268  CALL sgemm( 'N', 'C', n, n, n, one, u, ldu, u, ldu, zero, work,
269  \$ n )
270 *
271  DO 80 j = 1, n
272  work( ( n+1 )*( j-1 )+1 ) = work( ( n+1 )*( j-1 )+1 ) - one
273  80 CONTINUE
274 *
275  result( 2 ) = min( slange( '1', n, n, work, n, work( n**2+1 ) ),
276  \$ real( n ) ) / ( n*ulp )
277 *
278  RETURN
279 *
280 * End of SSBT21
281 *
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:53
real function slange(NORM, M, N, A, LDA, WORK)
SLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: slange.f:114
real function slansp(NORM, UPLO, N, AP, WORK)
SLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: slansp.f:114
real function slansb(NORM, UPLO, N, K, AB, LDAB, WORK)
SLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: slansb.f:129
subroutine sspr(UPLO, N, ALPHA, X, INCX, AP)
SSPR
Definition: sspr.f:127
subroutine sspr2(UPLO, N, ALPHA, X, INCX, Y, INCY, AP)
SSPR2
Definition: sspr2.f:142
subroutine sgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
SGEMM
Definition: sgemm.f:187
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:68
Here is the call graph for this function:
Here is the caller graph for this function: