LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zebchvxx.f
Go to the documentation of this file.
1*> \brief \b ZEBCHVXX
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE ZEBCHVXX( THRESH, PATH )
12*
13* .. Scalar Arguments ..
14* DOUBLE PRECISION THRESH
15* CHARACTER*3 PATH
16* ..
17*
18* Purpose
19* ======
20*
21*> \details \b Purpose:
22*> \verbatim
23*>
24*> ZEBCHVXX will run Z**SVXX on a series of Hilbert matrices and then
25*> compare the error bounds returned by Z**SVXX to see if the returned
26*> answer indeed falls within those bounds.
27*>
28*> Eight test ratios will be computed. The tests will pass if they are .LT.
29*> THRESH. There are two cases that are determined by 1 / (SQRT( N ) * EPS).
30*> If that value is .LE. to the component wise reciprocal condition number,
31*> it uses the guaranteed case, other wise it uses the unguaranteed case.
32*>
33*> Test ratios:
34*> Let Xc be X_computed and Xt be X_truth.
35*> The norm used is the infinity norm.
36*>
37*> Let A be the guaranteed case and B be the unguaranteed case.
38*>
39*> 1. Normwise guaranteed forward error bound.
40*> A: norm ( abs( Xc - Xt ) / norm ( Xt ) .LE. ERRBND( *, nwise_i, bnd_i ) and
41*> ERRBND( *, nwise_i, bnd_i ) .LE. MAX(SQRT(N),10) * EPS.
42*> If these conditions are met, the test ratio is set to be
43*> ERRBND( *, nwise_i, bnd_i ) / MAX(SQRT(N), 10). Otherwise it is 1/EPS.
44*> B: For this case, CGESVXX should just return 1. If it is less than
45*> one, treat it the same as in 1A. Otherwise it fails. (Set test
46*> ratio to ERRBND( *, nwise_i, bnd_i ) * THRESH?)
47*>
48*> 2. Componentwise guaranteed forward error bound.
49*> A: norm ( abs( Xc(j) - Xt(j) ) ) / norm (Xt(j)) .LE. ERRBND( *, cwise_i, bnd_i )
50*> for all j .AND. ERRBND( *, cwise_i, bnd_i ) .LE. MAX(SQRT(N), 10) * EPS.
51*> If these conditions are met, the test ratio is set to be
52*> ERRBND( *, cwise_i, bnd_i ) / MAX(SQRT(N), 10). Otherwise it is 1/EPS.
53*> B: Same as normwise test ratio.
54*>
55*> 3. Backwards error.
56*> A: The test ratio is set to BERR/EPS.
57*> B: Same test ratio.
58*>
59*> 4. Reciprocal condition number.
60*> A: A condition number is computed with Xt and compared with the one
61*> returned from CGESVXX. Let RCONDc be the RCOND returned by CGESVXX
62*> and RCONDt be the RCOND from the truth value. Test ratio is set to
63*> MAX(RCONDc/RCONDt, RCONDt/RCONDc).
64*> B: Test ratio is set to 1 / (EPS * RCONDc).
65*>
66*> 5. Reciprocal normwise condition number.
67*> A: The test ratio is set to
68*> MAX(ERRBND( *, nwise_i, cond_i ) / NCOND, NCOND / ERRBND( *, nwise_i, cond_i )).
69*> B: Test ratio is set to 1 / (EPS * ERRBND( *, nwise_i, cond_i )).
70*>
71*> 6. Reciprocal componentwise condition number.
72*> A: Test ratio is set to
73*> MAX(ERRBND( *, cwise_i, cond_i ) / CCOND, CCOND / ERRBND( *, cwise_i, cond_i )).
74*> B: Test ratio is set to 1 / (EPS * ERRBND( *, cwise_i, cond_i )).
75*>
76*> .. Parameters ..
77*> NMAX is determined by the largest number in the inverse of the hilbert
78*> matrix. Precision is exhausted when the largest entry in it is greater
79*> than 2 to the power of the number of bits in the fraction of the data
80*> type used plus one, which is 24 for single precision.
81*> NMAX should be 6 for single and 11 for double.
82*> \endverbatim
83*
84* Authors:
85* ========
86*
87*> \author Univ. of Tennessee
88*> \author Univ. of California Berkeley
89*> \author Univ. of Colorado Denver
90*> \author NAG Ltd.
91*
92*> \ingroup complex16_lin
93*
94* =====================================================================
95 SUBROUTINE zebchvxx( THRESH, PATH )
96 IMPLICIT NONE
97* .. Scalar Arguments ..
98 DOUBLE PRECISION THRESH
99 CHARACTER*3 PATH
100
101 INTEGER NMAX, NPARAMS, NERRBND, NTESTS, KL, KU
102 parameter(nmax = 10, nparams = 2, nerrbnd = 3,
103 $ ntests = 6)
104
105* .. Local Scalars ..
106 INTEGER N, NRHS, INFO, I ,J, k, NFAIL, LDA,
107 $ N_AUX_TESTS, LDAB, LDAFB
108 CHARACTER FACT, TRANS, UPLO, EQUED
109 CHARACTER*2 C2
110 CHARACTER(3) NGUAR, CGUAR
111 LOGICAL printed_guide
112 DOUBLE PRECISION NCOND, CCOND, M, NORMDIF, NORMT, RCOND,
113 $ RNORM, RINORM, SUMR, SUMRI, EPS,
114 $ BERR(NMAX), RPVGRW, ORCOND,
115 $ CWISE_ERR, NWISE_ERR, CWISE_BND, NWISE_BND,
116 $ CWISE_RCOND, NWISE_RCOND,
117 $ CONDTHRESH, ERRTHRESH
118 COMPLEX*16 ZDUM
119
120* .. Local Arrays ..
121 DOUBLE PRECISION TSTRAT(NTESTS), RINV(NMAX), PARAMS(NPARAMS),
122 $ S(NMAX),R(NMAX),C(NMAX),RWORK(3*NMAX),
123 $ DIFF(NMAX, NMAX),
124 $ ERRBND_N(NMAX*3), ERRBND_C(NMAX*3)
125 INTEGER IPIV(NMAX)
126 COMPLEX*16 A(NMAX,NMAX),INVHILB(NMAX,NMAX),X(NMAX,NMAX),
127 $ WORK(NMAX*3*5), AF(NMAX, NMAX),B(NMAX, NMAX),
128 $ ACOPY(NMAX, NMAX),
129 $ AB( (NMAX-1)+(NMAX-1)+1, NMAX ),
130 $ ABCOPY( (NMAX-1)+(NMAX-1)+1, NMAX ),
131 $ AFB( 2*(NMAX-1)+(NMAX-1)+1, NMAX )
132
133* .. External Functions ..
134 DOUBLE PRECISION DLAMCH
135
136* .. External Subroutines ..
137 EXTERNAL zlahilb, zgesvxx, zposvxx, zsysvxx,
139 LOGICAL LSAMEN
140
141* .. Intrinsic Functions ..
142 INTRINSIC sqrt, max, abs, dble, dimag
143
144* .. Statement Functions ..
145 DOUBLE PRECISION CABS1
146
147* .. Statement Function Definitions ..
148 cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
149
150* .. Parameters ..
151 INTEGER NWISE_I, CWISE_I
152 parameter(nwise_i = 1, cwise_i = 1)
153 INTEGER BND_I, COND_I
154 parameter(bnd_i = 2, cond_i = 3)
155
156* Create the loop to test out the Hilbert matrices
157
158 fact = 'E'
159 uplo = 'U'
160 trans = 'N'
161 equed = 'N'
162 eps = dlamch('Epsilon')
163 nfail = 0
164 n_aux_tests = 0
165 lda = nmax
166 ldab = (nmax-1)+(nmax-1)+1
167 ldafb = 2*(nmax-1)+(nmax-1)+1
168 c2 = path( 2: 3 )
169
170* Main loop to test the different Hilbert Matrices.
171
172 printed_guide = .false.
173
174 DO n = 1 , nmax
175 params(1) = -1
176 params(2) = -1
177
178 kl = n-1
179 ku = n-1
180 nrhs = n
181 m = max(sqrt(dble(n)), 10.0d+0)
182
183* Generate the Hilbert matrix, its inverse, and the
184* right hand side, all scaled by the LCM(1,..,2N-1).
185 CALL zlahilb(n, n, a, lda, invhilb, lda, b,
186 $ lda, work, info, path)
187
188* Copy A into ACOPY.
189 CALL zlacpy('ALL', n, n, a, nmax, acopy, nmax)
190
191* Store A in band format for GB tests
192 DO j = 1, n
193 DO i = 1, kl+ku+1
194 ab( i, j ) = (0.0d+0,0.0d+0)
195 END DO
196 END DO
197 DO j = 1, n
198 DO i = max( 1, j-ku ), min( n, j+kl )
199 ab( ku+1+i-j, j ) = a( i, j )
200 END DO
201 END DO
202
203* Copy AB into ABCOPY.
204 DO j = 1, n
205 DO i = 1, kl+ku+1
206 abcopy( i, j ) = (0.0d+0,0.0d+0)
207 END DO
208 END DO
209 CALL zlacpy('ALL', kl+ku+1, n, ab, ldab, abcopy, ldab)
210
211* Call Z**SVXX with default PARAMS and N_ERR_BND = 3.
212 IF ( lsamen( 2, c2, 'SY' ) ) THEN
213 CALL zsysvxx(fact, uplo, n, nrhs, acopy, lda, af, lda,
214 $ ipiv, equed, s, b, lda, x, lda, orcond,
215 $ rpvgrw, berr, nerrbnd, errbnd_n, errbnd_c, nparams,
216 $ params, work, rwork, info)
217 ELSE IF ( lsamen( 2, c2, 'PO' ) ) THEN
218 CALL zposvxx(fact, uplo, n, nrhs, acopy, lda, af, lda,
219 $ equed, s, b, lda, x, lda, orcond,
220 $ rpvgrw, berr, nerrbnd, errbnd_n, errbnd_c, nparams,
221 $ params, work, rwork, info)
222 ELSE IF ( lsamen( 2, c2, 'HE' ) ) THEN
223 CALL zhesvxx(fact, uplo, n, nrhs, acopy, lda, af, lda,
224 $ ipiv, equed, s, b, lda, x, lda, orcond,
225 $ rpvgrw, berr, nerrbnd, errbnd_n, errbnd_c, nparams,
226 $ params, work, rwork, info)
227 ELSE IF ( lsamen( 2, c2, 'GB' ) ) THEN
228 CALL zgbsvxx(fact, trans, n, kl, ku, nrhs, abcopy,
229 $ ldab, afb, ldafb, ipiv, equed, r, c, b,
230 $ lda, x, lda, orcond, rpvgrw, berr, nerrbnd,
231 $ errbnd_n, errbnd_c, nparams, params, work, rwork,
232 $ info)
233 ELSE
234 CALL zgesvxx(fact, trans, n, nrhs, acopy, lda, af, lda,
235 $ ipiv, equed, r, c, b, lda, x, lda, orcond,
236 $ rpvgrw, berr, nerrbnd, errbnd_n, errbnd_c, nparams,
237 $ params, work, rwork, info)
238 END IF
239
240 n_aux_tests = n_aux_tests + 1
241 IF (orcond .LT. eps) THEN
242! Either factorization failed or the matrix is flagged, and 1 <=
243! INFO <= N+1. We don't decide based on rcond anymore.
244! IF (INFO .EQ. 0 .OR. INFO .GT. N+1) THEN
245! NFAIL = NFAIL + 1
246! WRITE (*, FMT=8000) N, INFO, ORCOND, RCOND
247! END IF
248 ELSE
249! Either everything succeeded (INFO == 0) or some solution failed
250! to converge (INFO > N+1).
251 IF (info .GT. 0 .AND. info .LE. n+1) THEN
252 nfail = nfail + 1
253 WRITE (*, fmt=8000) c2, n, info, orcond, rcond
254 END IF
255 END IF
256
257* Calculating the difference between Z**SVXX's X and the true X.
258 DO i = 1,n
259 DO j =1,nrhs
260 diff(i,j) = x(i,j) - invhilb(i,j)
261 END DO
262 END DO
263
264* Calculating the RCOND
265 rnorm = 0
266 rinorm = 0
267 IF ( lsamen( 2, c2, 'PO' ) .OR. lsamen( 2, c2, 'SY' ) .OR.
268 $ lsamen( 2, c2, 'HE' ) ) THEN
269 DO i = 1, n
270 sumr = 0
271 sumri = 0
272 DO j = 1, n
273 sumr = sumr + s(i) * cabs1(a(i,j)) * s(j)
274 sumri = sumri + cabs1(invhilb(i, j)) / (s(j) * s(i))
275 END DO
276 rnorm = max(rnorm,sumr)
277 rinorm = max(rinorm,sumri)
278 END DO
279 ELSE IF ( lsamen( 2, c2, 'GE' ) .OR. lsamen( 2, c2, 'GB' ) )
280 $ THEN
281 DO i = 1, n
282 sumr = 0
283 sumri = 0
284 DO j = 1, n
285 sumr = sumr + r(i) * cabs1(a(i,j)) * c(j)
286 sumri = sumri + cabs1(invhilb(i, j)) / (r(j) * c(i))
287 END DO
288 rnorm = max(rnorm,sumr)
289 rinorm = max(rinorm,sumri)
290 END DO
291 END IF
292
293 rnorm = rnorm / cabs1(a(1, 1))
294 rcond = 1.0d+0/(rnorm * rinorm)
295
296* Calculating the R for normwise rcond.
297 DO i = 1, n
298 rinv(i) = 0.0d+0
299 END DO
300 DO j = 1, n
301 DO i = 1, n
302 rinv(i) = rinv(i) + cabs1(a(i,j))
303 END DO
304 END DO
305
306* Calculating the Normwise rcond.
307 rinorm = 0.0d+0
308 DO i = 1, n
309 sumri = 0.0d+0
310 DO j = 1, n
311 sumri = sumri + cabs1(invhilb(i,j) * rinv(j))
312 END DO
313 rinorm = max(rinorm, sumri)
314 END DO
315
316! invhilb is the inverse *unscaled* Hilbert matrix, so scale its norm
317! by 1/A(1,1) to make the scaling match A (the scaled Hilbert matrix)
318 ncond = cabs1(a(1,1)) / rinorm
319
320 condthresh = m * eps
321 errthresh = m * eps
322
323 DO k = 1, nrhs
324 normt = 0.0d+0
325 normdif = 0.0d+0
326 cwise_err = 0.0d+0
327 DO i = 1, n
328 normt = max(cabs1(invhilb(i, k)), normt)
329 normdif = max(cabs1(x(i,k) - invhilb(i,k)), normdif)
330 IF (invhilb(i,k) .NE. 0.0d+0) THEN
331 cwise_err = max(cabs1(x(i,k) - invhilb(i,k))
332 $ /cabs1(invhilb(i,k)), cwise_err)
333 ELSE IF (x(i, k) .NE. 0.0d+0) THEN
334 cwise_err = dlamch('OVERFLOW')
335 END IF
336 END DO
337 IF (normt .NE. 0.0d+0) THEN
338 nwise_err = normdif / normt
339 ELSE IF (normdif .NE. 0.0d+0) THEN
340 nwise_err = dlamch('OVERFLOW')
341 ELSE
342 nwise_err = 0.0d+0
343 ENDIF
344
345 DO i = 1, n
346 rinv(i) = 0.0d+0
347 END DO
348 DO j = 1, n
349 DO i = 1, n
350 rinv(i) = rinv(i) + cabs1(a(i, j) * invhilb(j, k))
351 END DO
352 END DO
353 rinorm = 0.0d+0
354 DO i = 1, n
355 sumri = 0.0d+0
356 DO j = 1, n
357 sumri = sumri
358 $ + cabs1(invhilb(i, j) * rinv(j) / invhilb(i, k))
359 END DO
360 rinorm = max(rinorm, sumri)
361 END DO
362! invhilb is the inverse *unscaled* Hilbert matrix, so scale its norm
363! by 1/A(1,1) to make the scaling match A (the scaled Hilbert matrix)
364 ccond = cabs1(a(1,1))/rinorm
365
366! Forward error bound tests
367 nwise_bnd = errbnd_n(k + (bnd_i-1)*nrhs)
368 cwise_bnd = errbnd_c(k + (bnd_i-1)*nrhs)
369 nwise_rcond = errbnd_n(k + (cond_i-1)*nrhs)
370 cwise_rcond = errbnd_c(k + (cond_i-1)*nrhs)
371! write (*,*) 'nwise : ', n, k, ncond, nwise_rcond,
372! $ condthresh, ncond.ge.condthresh
373! write (*,*) 'nwise2: ', k, nwise_bnd, nwise_err, errthresh
374 IF (ncond .GE. condthresh) THEN
375 nguar = 'YES'
376 IF (nwise_bnd .GT. errthresh) THEN
377 tstrat(1) = 1/(2.0d+0*eps)
378 ELSE
379 IF (nwise_bnd .NE. 0.0d+0) THEN
380 tstrat(1) = nwise_err / nwise_bnd
381 ELSE IF (nwise_err .NE. 0.0d+0) THEN
382 tstrat(1) = 1/(16.0*eps)
383 ELSE
384 tstrat(1) = 0.0d+0
385 END IF
386 IF (tstrat(1) .GT. 1.0d+0) THEN
387 tstrat(1) = 1/(4.0d+0*eps)
388 END IF
389 END IF
390 ELSE
391 nguar = 'NO'
392 IF (nwise_bnd .LT. 1.0d+0) THEN
393 tstrat(1) = 1/(8.0d+0*eps)
394 ELSE
395 tstrat(1) = 1.0d+0
396 END IF
397 END IF
398! write (*,*) 'cwise : ', n, k, ccond, cwise_rcond,
399! $ condthresh, ccond.ge.condthresh
400! write (*,*) 'cwise2: ', k, cwise_bnd, cwise_err, errthresh
401 IF (ccond .GE. condthresh) THEN
402 cguar = 'YES'
403 IF (cwise_bnd .GT. errthresh) THEN
404 tstrat(2) = 1/(2.0d+0*eps)
405 ELSE
406 IF (cwise_bnd .NE. 0.0d+0) THEN
407 tstrat(2) = cwise_err / cwise_bnd
408 ELSE IF (cwise_err .NE. 0.0d+0) THEN
409 tstrat(2) = 1/(16.0d+0*eps)
410 ELSE
411 tstrat(2) = 0.0d+0
412 END IF
413 IF (tstrat(2) .GT. 1.0d+0) tstrat(2) = 1/(4.0d+0*eps)
414 END IF
415 ELSE
416 cguar = 'NO'
417 IF (cwise_bnd .LT. 1.0d+0) THEN
418 tstrat(2) = 1/(8.0d+0*eps)
419 ELSE
420 tstrat(2) = 1.0d+0
421 END IF
422 END IF
423
424! Backwards error test
425 tstrat(3) = berr(k)/eps
426
427! Condition number tests
428 tstrat(4) = rcond / orcond
429 IF (rcond .GE. condthresh .AND. tstrat(4) .LT. 1.0d+0)
430 $ tstrat(4) = 1.0d+0 / tstrat(4)
431
432 tstrat(5) = ncond / nwise_rcond
433 IF (ncond .GE. condthresh .AND. tstrat(5) .LT. 1.0d+0)
434 $ tstrat(5) = 1.0d+0 / tstrat(5)
435
436 tstrat(6) = ccond / nwise_rcond
437 IF (ccond .GE. condthresh .AND. tstrat(6) .LT. 1.0d+0)
438 $ tstrat(6) = 1.0d+0 / tstrat(6)
439
440 DO i = 1, ntests
441 IF (tstrat(i) .GT. thresh) THEN
442 IF (.NOT.printed_guide) THEN
443 WRITE(*,*)
444 WRITE( *, 9996) 1
445 WRITE( *, 9995) 2
446 WRITE( *, 9994) 3
447 WRITE( *, 9993) 4
448 WRITE( *, 9992) 5
449 WRITE( *, 9991) 6
450 WRITE( *, 9990) 7
451 WRITE( *, 9989) 8
452 WRITE(*,*)
453 printed_guide = .true.
454 END IF
455 WRITE( *, 9999) c2, n, k, nguar, cguar, i, tstrat(i)
456 nfail = nfail + 1
457 END IF
458 END DO
459 END DO
460
461c$$$ WRITE(*,*)
462c$$$ WRITE(*,*) 'Normwise Error Bounds'
463c$$$ WRITE(*,*) 'Guaranteed error bound: ',ERRBND(NRHS,nwise_i,bnd_i)
464c$$$ WRITE(*,*) 'Reciprocal condition number: ',ERRBND(NRHS,nwise_i,cond_i)
465c$$$ WRITE(*,*) 'Raw error estimate: ',ERRBND(NRHS,nwise_i,rawbnd_i)
466c$$$ WRITE(*,*)
467c$$$ WRITE(*,*) 'Componentwise Error Bounds'
468c$$$ WRITE(*,*) 'Guaranteed error bound: ',ERRBND(NRHS,cwise_i,bnd_i)
469c$$$ WRITE(*,*) 'Reciprocal condition number: ',ERRBND(NRHS,cwise_i,cond_i)
470c$$$ WRITE(*,*) 'Raw error estimate: ',ERRBND(NRHS,cwise_i,rawbnd_i)
471c$$$ print *, 'Info: ', info
472c$$$ WRITE(*,*)
473* WRITE(*,*) 'TSTRAT: ',TSTRAT
474
475 END DO
476
477 WRITE(*,*)
478 IF( nfail .GT. 0 ) THEN
479 WRITE(*,9998) c2, nfail, ntests*n+n_aux_tests
480 ELSE
481 WRITE(*,9997) c2
482 END IF
483 9999 FORMAT( ' Z', a2, 'SVXX: N =', i2, ', RHS = ', i2,
484 $ ', NWISE GUAR. = ', a, ', CWISE GUAR. = ', a,
485 $ ' test(',i1,') =', g12.5 )
486 9998 FORMAT( ' Z', a2, 'SVXX: ', i6, ' out of ', i6,
487 $ ' tests failed to pass the threshold' )
488 9997 FORMAT( ' Z', a2, 'SVXX passed the tests of error bounds' )
489* Test ratios.
490 9996 FORMAT( 3x, i2, ': Normwise guaranteed forward error', / 5x,
491 $ 'Guaranteed case: if norm ( abs( Xc - Xt )',
492 $ .LE.' / norm ( Xt ) ERRBND( *, nwise_i, bnd_i ), then',
493 $ / 5x,
494 $ .LE.'ERRBND( *, nwise_i, bnd_i ) MAX(SQRT(N), 10) * EPS')
495 9995 FORMAT( 3x, i2, ': Componentwise guaranteed forward error' )
496 9994 FORMAT( 3x, i2, ': Backwards error' )
497 9993 FORMAT( 3x, i2, ': Reciprocal condition number' )
498 9992 FORMAT( 3x, i2, ': Reciprocal normwise condition number' )
499 9991 FORMAT( 3x, i2, ': Raw normwise error estimate' )
500 9990 FORMAT( 3x, i2, ': Reciprocal componentwise condition number' )
501 9989 FORMAT( 3x, i2, ': Raw componentwise error estimate' )
502
503 8000 FORMAT( ' Z', a2, 'SVXX: N =', i2, ', INFO = ', i3,
504 $ ', ORCOND = ', g12.5, ', real RCOND = ', g12.5 )
505*
506* End of ZEBCHVXX
507*
508 END
subroutine zlahilb(n, nrhs, a, lda, x, ldx, b, ldb, work, info, path)
ZLAHILB
Definition zlahilb.f:134
subroutine zgbsvxx(fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, equed, r, c, b, ldb, x, ldx, rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
ZGBSVXX computes the solution to system of linear equations A * X = B for GB matrices
Definition zgbsvxx.f:560
subroutine zgesvxx(fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b, ldb, x, ldx, rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
ZGESVXX computes the solution to system of linear equations A * X = B for GE matrices
Definition zgesvxx.f:540
subroutine zsysvxx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, equed, s, b, ldb, x, ldx, rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
ZSYSVXX computes the solution to system of linear equations A * X = B for SY matrices
Definition zsysvxx.f:506
subroutine zhesvxx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, equed, s, b, ldb, x, ldx, rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
ZHESVXX computes the solution to system of linear equations A * X = B for HE matrices
Definition zhesvxx.f:506
subroutine zlacpy(uplo, m, n, a, lda, b, ldb)
ZLACPY copies all or part of one two-dimensional array to another.
Definition zlacpy.f:103
logical function lsamen(n, ca, cb)
LSAMEN
Definition lsamen.f:74
subroutine zposvxx(fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x, ldx, rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
ZPOSVXX computes the solution to system of linear equations A * X = B for PO matrices
Definition zposvxx.f:493
subroutine zebchvxx(thresh, path)
ZEBCHVXX
Definition zebchvxx.f:96