LAPACK  3.10.0 LAPACK: Linear Algebra PACKage

## ◆ claqz1()

 subroutine claqz1 ( logical, intent(in) ILQ, logical, intent(in) ILZ, integer, intent(in) K, integer, intent(in) ISTARTM, integer, intent(in) ISTOPM, integer, intent(in) IHI, complex, dimension( lda, * ) A, integer, intent(in) LDA, complex, dimension( ldb, * ) B, integer, intent(in) LDB, integer, intent(in) NQ, integer, intent(in) QSTART, complex, dimension( ldq, * ) Q, integer, intent(in) LDQ, integer, intent(in) NZ, integer, intent(in) ZSTART, complex, dimension( ldz, * ) Z, integer, intent(in) LDZ )

CLAQZ1

Purpose:
`      CLAQZ1 chases a 1x1 shift bulge in a matrix pencil down a single position`
Parameters
 [in] ILQ ``` ILQ is LOGICAL Determines whether or not to update the matrix Q``` [in] ILZ ``` ILZ is LOGICAL Determines whether or not to update the matrix Z``` [in] K ``` K is INTEGER Index indicating the position of the bulge. On entry, the bulge is located in (A(k+1,k),B(k+1,k)). On exit, the bulge is located in (A(k+2,k+1),B(k+2,k+1)).``` [in] ISTARTM ` ISTARTM is INTEGER` [in] ISTOPM ``` ISTOPM is INTEGER Updates to (A,B) are restricted to (istartm:k+2,k:istopm). It is assumed without checking that istartm <= k+1 and k+2 <= istopm``` [in] IHI ` IHI is INTEGER` [in,out] A ` A is COMPLEX array, dimension (LDA,N)` [in] LDA ``` LDA is INTEGER The leading dimension of A as declared in the calling procedure.``` [in,out] B ` B is COMPLEX array, dimension (LDB,N)` [in] LDB ``` LDB is INTEGER The leading dimension of B as declared in the calling procedure.``` [in] NQ ``` NQ is INTEGER The order of the matrix Q``` [in] QSTART ``` QSTART is INTEGER Start index of the matrix Q. Rotations are applied To columns k+2-qStart:k+3-qStart of Q.``` [in,out] Q ` Q is COMPLEX array, dimension (LDQ,NQ)` [in] LDQ ``` LDQ is INTEGER The leading dimension of Q as declared in the calling procedure.``` [in] NZ ``` NZ is INTEGER The order of the matrix Z``` [in] ZSTART ``` ZSTART is INTEGER Start index of the matrix Z. Rotations are applied To columns k+1-qStart:k+2-qStart of Z.``` [in,out] Z ` Z is COMPLEX array, dimension (LDZ,NZ)` [in] LDZ ``` LDZ is INTEGER The leading dimension of Q as declared in the calling procedure.```
Date
May 2020

Definition at line 171 of file claqz1.f.

173  IMPLICIT NONE
174 *
175 * Arguments
176  LOGICAL, INTENT( IN ) :: ILQ, ILZ
177  INTEGER, INTENT( IN ) :: K, LDA, LDB, LDQ, LDZ, ISTARTM, ISTOPM,
178  \$ NQ, NZ, QSTART, ZSTART, IHI
179  COMPLEX :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ), Z( LDZ, * )
180 *
181 * Parameters
182  COMPLEX CZERO, CONE
183  parameter( czero = ( 0.0, 0.0 ), cone = ( 1.0, 0.0 ) )
184  REAL :: ZERO, ONE, HALF
185  parameter( zero = 0.0, one = 1.0, half = 0.5 )
186 *
187 * Local variables
188  REAL :: C
189  COMPLEX :: S, TEMP
190 *
191 * External Functions
192  EXTERNAL :: clartg, crot
193 *
194  IF( k+1 .EQ. ihi ) THEN
195 *
196 * Shift is located on the edge of the matrix, remove it
197 *
198  CALL clartg( b( ihi, ihi ), b( ihi, ihi-1 ), c, s, temp )
199  b( ihi, ihi ) = temp
200  b( ihi, ihi-1 ) = czero
201  CALL crot( ihi-istartm, b( istartm, ihi ), 1, b( istartm,
202  \$ ihi-1 ), 1, c, s )
203  CALL crot( ihi-istartm+1, a( istartm, ihi ), 1, a( istartm,
204  \$ ihi-1 ), 1, c, s )
205  IF ( ilz ) THEN
206  CALL crot( nz, z( 1, ihi-zstart+1 ), 1, z( 1, ihi-1-zstart+
207  \$ 1 ), 1, c, s )
208  END IF
209 *
210  ELSE
211 *
212 * Normal operation, move bulge down
213 *
214 *
215 * Apply transformation from the right
216 *
217  CALL clartg( b( k+1, k+1 ), b( k+1, k ), c, s, temp )
218  b( k+1, k+1 ) = temp
219  b( k+1, k ) = czero
220  CALL crot( k+2-istartm+1, a( istartm, k+1 ), 1, a( istartm,
221  \$ k ), 1, c, s )
222  CALL crot( k-istartm+1, b( istartm, k+1 ), 1, b( istartm, k ),
223  \$ 1, c, s )
224  IF ( ilz ) THEN
225  CALL crot( nz, z( 1, k+1-zstart+1 ), 1, z( 1, k-zstart+1 ),
226  \$ 1, c, s )
227  END IF
228 *
229 * Apply transformation from the left
230 *
231  CALL clartg( a( k+1, k ), a( k+2, k ), c, s, temp )
232  a( k+1, k ) = temp
233  a( k+2, k ) = czero
234  CALL crot( istopm-k, a( k+1, k+1 ), lda, a( k+2, k+1 ), lda, c,
235  \$ s )
236  CALL crot( istopm-k, b( k+1, k+1 ), ldb, b( k+2, k+1 ), ldb, c,
237  \$ s )
238  IF ( ilq ) THEN
239  CALL crot( nq, q( 1, k+1-qstart+1 ), 1, q( 1, k+2-qstart+
240  \$ 1 ), 1, c, conjg( s ) )
241  END IF
242 *
243  END IF
244 *
245 * End of CLAQZ1
246 *
subroutine clartg(f, g, c, s, r)
CLARTG generates a plane rotation with real cosine and complex sine.
Definition: clartg.f90:118
subroutine crot(N, CX, INCX, CY, INCY, C, S)
CROT applies a plane rotation with real cosine and complex sine to a pair of complex vectors.
Definition: crot.f:103
Here is the call graph for this function:
Here is the caller graph for this function: