LAPACK  3.10.0
LAPACK: Linear Algebra PACKage
lapacke_zgesvdx_work.c
Go to the documentation of this file.
1 /*****************************************************************************
2  Copyright (c) 2014, Intel Corp.
3  All rights reserved.
4 
5  Redistribution and use in source and binary forms, with or without
6  modification, are permitted provided that the following conditions are met:
7 
8  * Redistributions of source code must retain the above copyright notice,
9  this list of conditions and the following disclaimer.
10  * Redistributions in binary form must reproduce the above copyright
11  notice, this list of conditions and the following disclaimer in the
12  documentation and/or other materials provided with the distribution.
13  * Neither the name of Intel Corporation nor the names of its contributors
14  may be used to endorse or promote products derived from this software
15  without specific prior written permission.
16 
17  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  THE POSSIBILITY OF SUCH DAMAGE.
28 *****************************************************************************
29 * Contents: Native middle-level C interface to LAPACK function zgesvdx
30 * Author: Intel Corporation
31 *****************************************************************************/
32 
33 #include "lapacke_utils.h"
34 
35 lapack_int LAPACKE_zgesvdx_work( int matrix_layout, char jobu, char jobvt, char range,
37  lapack_int lda, double vl, double vu,
38  lapack_int il, lapack_int iu, lapack_int* ns,
39  double* s, lapack_complex_double* u, lapack_int ldu,
41  lapack_complex_double* work, lapack_int lwork,
42  double* rwork, lapack_int* iwork )
43 {
44  lapack_int info = 0;
45  if( matrix_layout == LAPACK_COL_MAJOR ) {
46  /* Call LAPACK function and adjust info */
47  LAPACK_zgesvdx( &jobu, &jobvt, &range, &m, &n, a, &lda, &vl, &vu,
48  &il, &iu, ns, s, u, &ldu, vt, &ldvt,
49  work, &lwork, rwork, iwork, &info );
50  if( info < 0 ) {
51  info = info - 1;
52  }
53  } else if( matrix_layout == LAPACK_ROW_MAJOR ) {
54  lapack_int nrows_u = LAPACKE_lsame( jobu, 'v' ) ? m : 0;
55  lapack_int ncols_u = LAPACKE_lsame( jobu, 'v' ) ?
56  ( LAPACKE_lsame( range, 'i' ) ? MAX(iu - il + 1, 0) : MIN(m,n)) : 0;
57  lapack_int nrows_vt = LAPACKE_lsame( jobvt, 'v' ) ?
58  ( LAPACKE_lsame( range, 'i' ) ? MAX(iu - il + 1, 0) : MIN(m,n)) : 0;
59  lapack_int ncols_vt = LAPACKE_lsame( jobvt, 'v' ) ? n : 0;
60 
61  lapack_int lda_t = MAX(1,m);
62  lapack_int ldu_t = MAX(1,nrows_u);
63  lapack_int ldvt_t = MAX(1,nrows_vt);
64 
65  lapack_complex_double* a_t = NULL;
66  lapack_complex_double* u_t = NULL;
67  lapack_complex_double* vt_t = NULL;
68  /* Check leading dimension(s) */
69  if( lda < n ) {
70  info = -8;
71  LAPACKE_xerbla( "LAPACKE_zgesvdx_work", info );
72  return info;
73  }
74  if( ldu < ncols_u ) {
75  info = -16;
76  LAPACKE_xerbla( "LAPACKE_zgesvdx_work", info );
77  return info;
78  }
79  if( ldvt < ncols_vt ) {
80  info = -18;
81  LAPACKE_xerbla( "LAPACKE_zgesvdx_work", info );
82  return info;
83  }
84  /* Query optimal working array(s) size if requested */
85  if( lwork == -1 ) {
86  LAPACK_zgesvdx( &jobu, &jobvt, &range, &m, &n, a, &lda_t, &vl, &vu,
87  &il, &iu, ns, s, u, &ldu_t, vt,
88  &ldvt_t, work, &lwork, rwork, iwork, &info );
89  return (info < 0) ? (info - 1) : info;
90  }
91  /* Allocate memory for temporary array(s) */
92  a_t = (lapack_complex_double*)
93  LAPACKE_malloc( sizeof(lapack_complex_double) * lda_t * MAX(1,n) );
94  if( a_t == NULL ) {
96  goto exit_level_0;
97  }
98  if( LAPACKE_lsame( jobu, 'v' ) ) {
99  u_t = (lapack_complex_double*)
100  LAPACKE_malloc( sizeof(lapack_complex_double) * ldu_t * MAX(1,ncols_u) );
101  if( u_t == NULL ) {
103  goto exit_level_1;
104  }
105  }
106  if( LAPACKE_lsame( jobvt, 'v' ) ) {
107  vt_t = (lapack_complex_double*)
108  LAPACKE_malloc( sizeof(lapack_complex_double) * ldvt_t * MAX(1,n) );
109  if( vt_t == NULL ) {
111  goto exit_level_2;
112  }
113  }
114  /* Transpose input matrices */
115  LAPACKE_zge_trans( matrix_layout, m, n, a, lda, a_t, lda_t );
116  /* Call LAPACK function and adjust info */
117  LAPACK_zgesvdx( &jobu, &jobvt, &range, &m, &n, a_t, &lda_t, &vl, &vu,
118  &il, &iu, ns, s, u_t, &ldu_t, vt_t,
119  &ldvt_t, work, &lwork, rwork, iwork, &info );
120  if( info < 0 ) {
121  info = info - 1;
122  }
123  /* Transpose output matrices */
124  LAPACKE_zge_trans( LAPACK_COL_MAJOR, m, n, a_t, lda_t, a, lda );
125  if( LAPACKE_lsame( jobu, 'v' ) ) {
126  LAPACKE_zge_trans( LAPACK_COL_MAJOR, nrows_u, ncols_u, u_t, ldu_t,
127  u, ldu );
128  }
129  if( LAPACKE_lsame( jobvt, 'v' ) ) {
130  LAPACKE_zge_trans( LAPACK_COL_MAJOR, nrows_vt, n, vt_t, ldvt_t, vt,
131  ldvt );
132  }
133  /* Release memory and exit */
134  if( LAPACKE_lsame( jobvt, 'v' ) ) {
135  LAPACKE_free( vt_t );
136  }
137 exit_level_2:
138  if( LAPACKE_lsame( jobu, 'v' ) ) {
139  LAPACKE_free( u_t );
140  }
141 exit_level_1:
142  LAPACKE_free( a_t );
143 exit_level_0:
144  if( info == LAPACK_TRANSPOSE_MEMORY_ERROR ) {
145  LAPACKE_xerbla( "LAPACKE_zgesvdx_work", info );
146  }
147  } else {
148  info = -1;
149  LAPACKE_xerbla( "LAPACKE_zgesvdx_work", info );
150  }
151  return info;
152 }
#define LAPACK_zgesvdx(...)
Definition: lapack.h:3615
#define lapack_int
Definition: lapack.h:83
#define lapack_complex_double
Definition: lapack.h:63
#define LAPACK_COL_MAJOR
Definition: lapacke.h:53
#define LAPACKE_free(p)
Definition: lapacke.h:46
#define LAPACK_ROW_MAJOR
Definition: lapacke.h:52
#define LAPACKE_malloc(size)
Definition: lapacke.h:43
#define LAPACK_TRANSPOSE_MEMORY_ERROR
Definition: lapacke.h:56
lapack_logical LAPACKE_lsame(char ca, char cb)
Definition: lapacke_lsame.c:35
void LAPACKE_xerbla(const char *name, lapack_int info)
void LAPACKE_zge_trans(int matrix_layout, lapack_int m, lapack_int n, const lapack_complex_double *in, lapack_int ldin, lapack_complex_double *out, lapack_int ldout)
#define MIN(x, y)
Definition: lapacke_utils.h:49
#define MAX(x, y)
Definition: lapacke_utils.h:46
lapack_int LAPACKE_zgesvdx_work(int matrix_layout, char jobu, char jobvt, char range, lapack_int m, lapack_int n, lapack_complex_double *a, lapack_int lda, double vl, double vu, lapack_int il, lapack_int iu, lapack_int *ns, double *s, lapack_complex_double *u, lapack_int ldu, lapack_complex_double *vt, lapack_int ldvt, lapack_complex_double *work, lapack_int lwork, double *rwork, lapack_int *iwork)