LAPACK  3.8.0
LAPACK: Linear Algebra PACKage
zerrlqt.f
Go to the documentation of this file.
1 *> \brief \b ZERLQT
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE ZERRLQT( PATH, NUNIT )
12 *
13 * .. Scalar Arguments ..
14 * CHARACTER*3 PATH
15 * INTEGER NUNIT
16 * ..
17 *
18 *
19 *> \par Purpose:
20 * =============
21 *>
22 *> \verbatim
23 *>
24 *> ZERRLQT tests the error exits for the COMPLEX routines
25 *> that use the LQT decomposition of a general matrix.
26 *> \endverbatim
27 *
28 * Arguments:
29 * ==========
30 *
31 *> \param[in] PATH
32 *> \verbatim
33 *> PATH is CHARACTER*3
34 *> The LAPACK path name for the routines to be tested.
35 *> \endverbatim
36 *>
37 *> \param[in] NUNIT
38 *> \verbatim
39 *> NUNIT is INTEGER
40 *> The unit number for output.
41 *> \endverbatim
42 *
43 * Authors:
44 * ========
45 *
46 *> \author Univ. of Tennessee
47 *> \author Univ. of California Berkeley
48 *> \author Univ. of Colorado Denver
49 *> \author NAG Ltd.
50 *
51 *> \date December 2016
52 *
53 *> \ingroup double_lin
54 *
55 * =====================================================================
56  SUBROUTINE zerrlqt( PATH, NUNIT )
57  IMPLICIT NONE
58 *
59 * -- LAPACK test routine (version 3.7.0) --
60 * -- LAPACK is a software package provided by Univ. of Tennessee, --
61 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
62 * December 2016
63 *
64 * .. Scalar Arguments ..
65  CHARACTER*3 PATH
66  INTEGER NUNIT
67 * ..
68 *
69 * =====================================================================
70 *
71 * .. Parameters ..
72  INTEGER NMAX
73  parameter( nmax = 2 )
74 * ..
75 * .. Local Scalars ..
76  INTEGER I, INFO, J
77 * ..
78 * .. Local Arrays ..
79  COMPLEX*16 A( nmax, nmax ), T( nmax, nmax ), W( nmax ),
80  $ c( nmax, nmax )
81 * ..
82 * .. External Subroutines ..
83  EXTERNAL alaesm, chkxer, zgelqt3, zgelqt,
84  $ zgemlqt
85 * ..
86 * .. Scalars in Common ..
87  LOGICAL LERR, OK
88  CHARACTER*32 SRNAMT
89  INTEGER INFOT, NOUT
90 * ..
91 * .. Common blocks ..
92  COMMON / infoc / infot, nout, ok, lerr
93  COMMON / srnamc / srnamt
94 * ..
95 * .. Intrinsic Functions ..
96  INTRINSIC dble, dcmplx
97 * ..
98 * .. Executable Statements ..
99 *
100  nout = nunit
101  WRITE( nout, fmt = * )
102 *
103 * Set the variables to innocuous values.
104 *
105  DO j = 1, nmax
106  DO i = 1, nmax
107  a( i, j ) = 1.d0 / dcmplx( dble( i+j ), 0.d0 )
108  c( i, j ) = 1.d0 / dcmplx( dble( i+j ), 0.d0 )
109  t( i, j ) = 1.d0 / dcmplx( dble( i+j ), 0.d0 )
110  END DO
111  w( j ) = 0.d0
112  END DO
113  ok = .true.
114 *
115 * Error exits for LQT factorization
116 *
117 * ZGELQT
118 *
119  srnamt = 'ZGELQT'
120  infot = 1
121  CALL zgelqt( -1, 0, 1, a, 1, t, 1, w, info )
122  CALL chkxer( 'ZGELQT', infot, nout, lerr, ok )
123  infot = 2
124  CALL zgelqt( 0, -1, 1, a, 1, t, 1, w, info )
125  CALL chkxer( 'ZGELQT', infot, nout, lerr, ok )
126  infot = 3
127  CALL zgelqt( 0, 0, 0, a, 1, t, 1, w, info )
128  CALL chkxer( 'ZGELQT', infot, nout, lerr, ok )
129  infot = 5
130  CALL zgelqt( 2, 1, 1, a, 1, t, 1, w, info )
131  CALL chkxer( 'ZGELQT', infot, nout, lerr, ok )
132  infot = 7
133  CALL zgelqt( 2, 2, 2, a, 2, t, 1, w, info )
134  CALL chkxer( 'ZGELQT', infot, nout, lerr, ok )
135 *
136 * ZGELQT3
137 *
138  srnamt = 'ZGELQT3'
139  infot = 1
140  CALL zgelqt3( -1, 0, a, 1, t, 1, info )
141  CALL chkxer( 'ZGELQT3', infot, nout, lerr, ok )
142  infot = 2
143  CALL zgelqt3( 0, -1, a, 1, t, 1, info )
144  CALL chkxer( 'ZGELQT3', infot, nout, lerr, ok )
145  infot = 4
146  CALL zgelqt3( 2, 2, a, 1, t, 1, info )
147  CALL chkxer( 'ZGELQT3', infot, nout, lerr, ok )
148  infot = 6
149  CALL zgelqt3( 2, 2, a, 2, t, 1, info )
150  CALL chkxer( 'ZGELQT3', infot, nout, lerr, ok )
151 *
152 * ZGEMLQT
153 *
154  srnamt = 'ZGEMLQT'
155  infot = 1
156  CALL zgemlqt( '/', 'N', 0, 0, 0, 1, a, 1, t, 1, c, 1, w, info )
157  CALL chkxer( 'ZGEMLQT', infot, nout, lerr, ok )
158  infot = 2
159  CALL zgemlqt( 'L', '/', 0, 0, 0, 1, a, 1, t, 1, c, 1, w, info )
160  CALL chkxer( 'ZGEMLQT', infot, nout, lerr, ok )
161  infot = 3
162  CALL zgemlqt( 'L', 'N', -1, 0, 0, 1, a, 1, t, 1, c, 1, w, info )
163  CALL chkxer( 'ZGEMLQT', infot, nout, lerr, ok )
164  infot = 4
165  CALL zgemlqt( 'L', 'N', 0, -1, 0, 1, a, 1, t, 1, c, 1, w, info )
166  CALL chkxer( 'ZGEMLQT', infot, nout, lerr, ok )
167  infot = 5
168  CALL zgemlqt( 'L', 'N', 0, 0, -1, 1, a, 1, t, 1, c, 1, w, info )
169  CALL chkxer( 'ZGEMLQT', infot, nout, lerr, ok )
170  infot = 5
171  CALL zgemlqt( 'R', 'N', 0, 0, -1, 1, a, 1, t, 1, c, 1, w, info )
172  CALL chkxer( 'ZGEMLQT', infot, nout, lerr, ok )
173  infot = 6
174  CALL zgemlqt( 'L', 'N', 0, 0, 0, 0, a, 1, t, 1, c, 1, w, info )
175  CALL chkxer( 'ZGEMLQT', infot, nout, lerr, ok )
176  infot = 8
177  CALL zgemlqt( 'R', 'N', 2, 2, 2, 1, a, 1, t, 1, c, 1, w, info )
178  CALL chkxer( 'ZGEMLQT', infot, nout, lerr, ok )
179  infot = 8
180  CALL zgemlqt( 'L', 'N', 2, 2, 2, 1, a, 1, t, 1, c, 1, w, info )
181  CALL chkxer( 'ZGEMLQT', infot, nout, lerr, ok )
182  infot = 10
183  CALL zgemlqt( 'R', 'N', 1, 1, 1, 1, a, 1, t, 0, c, 1, w, info )
184  CALL chkxer( 'ZGEMLQT', infot, nout, lerr, ok )
185  infot = 12
186  CALL zgemlqt( 'L', 'N', 1, 1, 1, 1, a, 1, t, 1, c, 0, w, info )
187  CALL chkxer( 'ZGEMLQT', infot, nout, lerr, ok )
188 *
189 * Print a summary line.
190 *
191  CALL alaesm( path, ok, nout )
192 *
193  RETURN
194 *
195 * End of ZERRLQT
196 *
197  END
subroutine zgelqt(M, N, MB, A, LDA, T, LDT, WORK, INFO)
ZGELQT
Definition: zgelqt.f:141
subroutine zerrlqt(PATH, NUNIT)
ZERLQT
Definition: zerrlqt.f:57
subroutine alaesm(PATH, OK, NOUT)
ALAESM
Definition: alaesm.f:65
recursive subroutine zgelqt3(M, N, A, LDA, T, LDT, INFO)
ZGELQT3 recursively computes a LQ factorization of a general real or complex matrix using the compact...
Definition: zgelqt3.f:133
subroutine zgemlqt(SIDE, TRANS, M, N, K, MB, V, LDV, T, LDT, C, LDC, WORK, INFO)
ZGEMLQT
Definition: zgemlqt.f:170
subroutine chkxer(SRNAMT, INFOT, NOUT, LERR, OK)
Definition: cblat2.f:3199