 LAPACK  3.10.0 LAPACK: Linear Algebra PACKage

◆ ctzrqf()

 subroutine ctzrqf ( integer M, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) TAU, integer INFO )

CTZRQF

Purpose:
This routine is deprecated and has been replaced by routine CTZRZF.

CTZRQF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A
to upper triangular form by means of unitary transformations.

The upper trapezoidal matrix A is factored as

A = ( R  0 ) * Z,

where Z is an N-by-N unitary matrix and R is an M-by-M upper
triangular matrix.
Parameters
 [in] M M is INTEGER The number of rows of the matrix A. M >= 0. [in] N N is INTEGER The number of columns of the matrix A. N >= M. [in,out] A A is COMPLEX array, dimension (LDA,N) On entry, the leading M-by-N upper trapezoidal part of the array A must contain the matrix to be factorized. On exit, the leading M-by-M upper triangular part of A contains the upper triangular matrix R, and elements M+1 to N of the first M rows of A, with the array TAU, represent the unitary matrix Z as a product of M elementary reflectors. [in] LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). [out] TAU TAU is COMPLEX array, dimension (M) The scalar factors of the elementary reflectors. [out] INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
Further Details:
The  factorization is obtained by Householder's method.  The kth
transformation matrix, Z( k ), whose conjugate transpose is used to
introduce zeros into the (m - k + 1)th row of A, is given in the form

Z( k ) = ( I     0   ),
( 0  T( k ) )

where

T( k ) = I - tau*u( k )*u( k )**H,   u( k ) = (   1    ),
(   0    )
( z( k ) )

tau is a scalar and z( k ) is an ( n - m ) element vector.
tau and z( k ) are chosen to annihilate the elements of the kth row
of X.

The scalar tau is returned in the kth element of TAU and the vector
u( k ) in the kth row of A, such that the elements of z( k ) are
in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
the upper triangular part of A.

Z is given by

Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).

Definition at line 137 of file ctzrqf.f.

138 *
139 * -- LAPACK computational routine --
140 * -- LAPACK is a software package provided by Univ. of Tennessee, --
141 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
142 *
143 * .. Scalar Arguments ..
144  INTEGER INFO, LDA, M, N
145 * ..
146 * .. Array Arguments ..
147  COMPLEX A( LDA, * ), TAU( * )
148 * ..
149 *
150 * =====================================================================
151 *
152 * .. Parameters ..
153  COMPLEX CONE, CZERO
154  parameter( cone = ( 1.0e+0, 0.0e+0 ),
155  \$ czero = ( 0.0e+0, 0.0e+0 ) )
156 * ..
157 * .. Local Scalars ..
158  INTEGER I, K, M1
159  COMPLEX ALPHA
160 * ..
161 * .. Intrinsic Functions ..
162  INTRINSIC conjg, max, min
163 * ..
164 * .. External Subroutines ..
165  EXTERNAL caxpy, ccopy, cgemv, cgerc, clacgv, clarfg,
166  \$ xerbla
167 * ..
168 * .. Executable Statements ..
169 *
170 * Test the input parameters.
171 *
172  info = 0
173  IF( m.LT.0 ) THEN
174  info = -1
175  ELSE IF( n.LT.m ) THEN
176  info = -2
177  ELSE IF( lda.LT.max( 1, m ) ) THEN
178  info = -4
179  END IF
180  IF( info.NE.0 ) THEN
181  CALL xerbla( 'CTZRQF', -info )
182  RETURN
183  END IF
184 *
185 * Perform the factorization.
186 *
187  IF( m.EQ.0 )
188  \$ RETURN
189  IF( m.EQ.n ) THEN
190  DO 10 i = 1, n
191  tau( i ) = czero
192  10 CONTINUE
193  ELSE
194  m1 = min( m+1, n )
195  DO 20 k = m, 1, -1
196 *
197 * Use a Householder reflection to zero the kth row of A.
198 * First set up the reflection.
199 *
200  a( k, k ) = conjg( a( k, k ) )
201  CALL clacgv( n-m, a( k, m1 ), lda )
202  alpha = a( k, k )
203  CALL clarfg( n-m+1, alpha, a( k, m1 ), lda, tau( k ) )
204  a( k, k ) = alpha
205  tau( k ) = conjg( tau( k ) )
206 *
207  IF( tau( k ).NE.czero .AND. k.GT.1 ) THEN
208 *
209 * We now perform the operation A := A*P( k )**H.
210 *
211 * Use the first ( k - 1 ) elements of TAU to store a( k ),
212 * where a( k ) consists of the first ( k - 1 ) elements of
213 * the kth column of A. Also let B denote the first
214 * ( k - 1 ) rows of the last ( n - m ) columns of A.
215 *
216  CALL ccopy( k-1, a( 1, k ), 1, tau, 1 )
217 *
218 * Form w = a( k ) + B*z( k ) in TAU.
219 *
220  CALL cgemv( 'No transpose', k-1, n-m, cone, a( 1, m1 ),
221  \$ lda, a( k, m1 ), lda, cone, tau, 1 )
222 *
223 * Now form a( k ) := a( k ) - conjg(tau)*w
224 * and B := B - conjg(tau)*w*z( k )**H.
225 *
226  CALL caxpy( k-1, -conjg( tau( k ) ), tau, 1, a( 1, k ),
227  \$ 1 )
228  CALL cgerc( k-1, n-m, -conjg( tau( k ) ), tau, 1,
229  \$ a( k, m1 ), lda, a( 1, m1 ), lda )
230  END IF
231  20 CONTINUE
232  END IF
233 *
234  RETURN
235 *
236 * End of CTZRQF
237 *
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
subroutine ccopy(N, CX, INCX, CY, INCY)
CCOPY
Definition: ccopy.f:81
subroutine caxpy(N, CA, CX, INCX, CY, INCY)
CAXPY
Definition: caxpy.f:88
subroutine cgemv(TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
CGEMV
Definition: cgemv.f:158
subroutine cgerc(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
CGERC
Definition: cgerc.f:130
subroutine clacgv(N, X, INCX)
CLACGV conjugates a complex vector.
Definition: clacgv.f:74
subroutine clarfg(N, ALPHA, X, INCX, TAU)
CLARFG generates an elementary reflector (Householder matrix).
Definition: clarfg.f:106
Here is the call graph for this function:
Here is the caller graph for this function: