LAPACK  3.8.0 LAPACK: Linear Algebra PACKage

## ◆ cdrvhe_aa()

 subroutine cdrvhe_aa ( logical, dimension( * ) DOTYPE, integer NN, integer, dimension( * ) NVAL, integer NRHS, real THRESH, logical TSTERR, integer NMAX, complex, dimension( * ) A, complex, dimension( * ) AFAC, complex, dimension( * ) AINV, complex, dimension( * ) B, complex, dimension( * ) X, complex, dimension( * ) XACT, complex, dimension( * ) WORK, real, dimension( * ) RWORK, integer, dimension( * ) IWORK, integer NOUT )

CDRVHE_AA

Purpose:
` CDRVHE_AA tests the driver routine CHESV_AA.`
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix dimension N.``` [in] NRHS ``` NRHS is INTEGER The number of right hand side vectors to be generated for each linear system.``` [in] THRESH ``` THRESH is REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for N, used in dimensioning the work arrays.``` [out] A ` A is COMPLEX array, dimension (NMAX*NMAX)` [out] AFAC ` AFAC is COMPLEX array, dimension (NMAX*NMAX)` [out] AINV ` AINV is COMPLEX array, dimension (NMAX*NMAX)` [out] B ` B is COMPLEX array, dimension (NMAX*NRHS)` [out] X ` X is COMPLEX array, dimension (NMAX*NRHS)` [out] XACT ` XACT is COMPLEX array, dimension (NMAX*NRHS)` [out] WORK ` WORK is COMPLEX array, dimension (NMAX*max(2,NRHS))` [out] RWORK ` RWORK is REAL array, dimension (NMAX+2*NRHS)` [out] IWORK ` IWORK is INTEGER array, dimension (NMAX)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```
Date
November 2017

Definition at line 155 of file cdrvhe_aa.f.

155 *
156 * -- LAPACK test routine (version 3.8.0) --
157 * -- LAPACK is a software package provided by Univ. of Tennessee, --
158 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
159 * November 2017
160 *
161 * .. Scalar Arguments ..
162  LOGICAL tsterr
163  INTEGER nmax, nn, nout, nrhs
164  REAL thresh
165 * ..
166 * .. Array Arguments ..
167  LOGICAL dotype( * )
168  INTEGER iwork( * ), nval( * )
169  REAL rwork( * )
170  COMPLEX a( * ), afac( * ), ainv( * ), b( * ),
171  \$ work( * ), x( * ), xact( * )
172 * ..
173 *
174 * =====================================================================
175 *
176 * .. Parameters ..
177  REAL one, zero
178  parameter( one = 1.0e+0, zero = 0.0e+0 )
179  INTEGER ntypes, ntests
180  parameter( ntypes = 10, ntests = 3 )
181  INTEGER nfact
182  parameter( nfact = 2 )
183 * ..
184 * .. Local Scalars ..
185  LOGICAL zerot
186  CHARACTER dist, fact, TYPE, uplo, xtype
187  CHARACTER*3 matpath, path
188  INTEGER i, i1, i2, ifact, imat, in, info, ioff, iuplo,
189  \$ izero, j, k, kl, ku, lda, lwork, mode, n,
190  \$ nb, nbmin, nerrs, nfail, nimat, nrun, nt
191  REAL anorm, cndnum
192 * ..
193 * .. Local Arrays ..
194  CHARACTER facts( nfact ), uplos( 2 )
195  INTEGER iseed( 4 ), iseedy( 4 )
196  REAL result( ntests )
197 * ..
198 * .. External Functions ..
199  REAL clanhe, sget06
200  EXTERNAL clanhe, sget06
201 * ..
202 * .. External Subroutines ..
203  EXTERNAL aladhd, alaerh, alasvm, xlaenv, cerrvx,
206  \$ chetrf_aa
207 * ..
208 * .. Scalars in Common ..
209  LOGICAL lerr, ok
210  CHARACTER*32 srnamt
211  INTEGER infot, nunit
212 * ..
213 * .. Common blocks ..
214  COMMON / infoc / infot, nunit, ok, lerr
215  COMMON / srnamc / srnamt
216 * ..
217 * .. Intrinsic Functions ..
218  INTRINSIC cmplx, max, min
219 * ..
220 * .. Data statements ..
221  DATA iseedy / 1988, 1989, 1990, 1991 /
222  DATA uplos / 'U', 'L' / , facts / 'F', 'N' /
223 * ..
224 * .. Executable Statements ..
225 *
226 * Initialize constants and the random number seed.
227 *
228 * Test path
229 *
230  path( 1: 1 ) = 'Complex precision'
231  path( 2: 3 ) = 'HA'
232 *
233 * Path to generate matrices
234 *
235  matpath( 1: 1 ) = 'Complex precision'
236  matpath( 2: 3 ) = 'HE'
237 *
238  nrun = 0
239  nfail = 0
240  nerrs = 0
241  DO 10 i = 1, 4
242  iseed( i ) = iseedy( i )
243  10 CONTINUE
244 *
245 * Test the error exits
246 *
247  IF( tsterr )
248  \$ CALL cerrvx( path, nout )
249  infot = 0
250 *
251 * Set the block size and minimum block size for testing.
252 *
253  nb = 1
254  nbmin = 2
255  CALL xlaenv( 1, nb )
256  CALL xlaenv( 2, nbmin )
257 *
258 * Do for each value of N in NVAL
259 *
260  DO 180 in = 1, nn
261  n = nval( in )
262  lwork = max( 3*n-2, n*(1+nb) )
263  lwork = max( lwork, 1 )
264  lda = max( n, 1 )
265  xtype = 'N'
266  nimat = ntypes
267  IF( n.LE.0 )
268  \$ nimat = 1
269 *
270  DO 170 imat = 1, nimat
271 *
272 * Do the tests only if DOTYPE( IMAT ) is true.
273 *
274  IF( .NOT.dotype( imat ) )
275  \$ GO TO 170
276 *
277 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
278 *
279  zerot = imat.GE.3 .AND. imat.LE.6
280  IF( zerot .AND. n.LT.imat-2 )
281  \$ GO TO 170
282 *
283 * Do first for UPLO = 'U', then for UPLO = 'L'
284 *
285  DO 160 iuplo = 1, 2
286  uplo = uplos( iuplo )
287 *
288 * Begin generate the test matrix A.
289 *
290 * Set up parameters with CLATB4 for the matrix generator
291 * based on the type of matrix to be generated.
292 *
293  CALL clatb4( matpath, imat, n, n, TYPE, kl, ku, anorm,
294  \$ mode, cndnum, dist )
295 *
296 * Generate a matrix with CLATMS.
297 *
298  srnamt = 'CLATMS'
299  CALL clatms( n, n, dist, iseed, TYPE, rwork, mode,
300  \$ cndnum, anorm, kl, ku, uplo, a, lda,
301  \$ work, info )
302 *
303 * Check error code from CLATMS and handle error.
304 *
305  IF( info.NE.0 ) THEN
306  CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n,
307  \$ -1, -1, -1, imat, nfail, nerrs, nout )
308  GO TO 160
309  END IF
310 *
311 * For types 3-6, zero one or more rows and columns of
312 * the matrix to test that INFO is returned correctly.
313 *
314  IF( zerot ) THEN
315  IF( imat.EQ.3 ) THEN
316  izero = 1
317  ELSE IF( imat.EQ.4 ) THEN
318  izero = n
319  ELSE
320  izero = n / 2 + 1
321  END IF
322 *
323  IF( imat.LT.6 ) THEN
324 *
325 * Set row and column IZERO to zero.
326 *
327  IF( iuplo.EQ.1 ) THEN
328  ioff = ( izero-1 )*lda
329  DO 20 i = 1, izero - 1
330  a( ioff+i ) = zero
331  20 CONTINUE
332  ioff = ioff + izero
333  DO 30 i = izero, n
334  a( ioff ) = zero
335  ioff = ioff + lda
336  30 CONTINUE
337  ELSE
338  ioff = izero
339  DO 40 i = 1, izero - 1
340  a( ioff ) = zero
341  ioff = ioff + lda
342  40 CONTINUE
343  ioff = ioff - izero
344  DO 50 i = izero, n
345  a( ioff+i ) = zero
346  50 CONTINUE
347  END IF
348  ELSE
349  ioff = 0
350  IF( iuplo.EQ.1 ) THEN
351 *
352 * Set the first IZERO rows and columns to zero.
353 *
354  DO 70 j = 1, n
355  i2 = min( j, izero )
356  DO 60 i = 1, i2
357  a( ioff+i ) = zero
358  60 CONTINUE
359  ioff = ioff + lda
360  70 CONTINUE
361  izero = 1
362  ELSE
363 *
364 * Set the first IZERO rows and columns to zero.
365 *
366  ioff = 0
367  DO 90 j = 1, n
368  i1 = max( j, izero )
369  DO 80 i = i1, n
370  a( ioff+i ) = zero
371  80 CONTINUE
372  ioff = ioff + lda
373  90 CONTINUE
374  END IF
375  END IF
376  ELSE
377  izero = 0
378  END IF
379 *
380 * End generate the test matrix A.
381 *
382 *
383  DO 150 ifact = 1, nfact
384 *
385 * Do first for FACT = 'F', then for other values.
386 *
387  fact = facts( ifact )
388 *
389 * Form an exact solution and set the right hand side.
390 *
391  srnamt = 'CLARHS'
392  CALL clarhs( matpath, xtype, uplo, ' ', n, n, kl, ku,
393  \$ nrhs, a, lda, xact, lda, b, lda, iseed,
394  \$ info )
395  xtype = 'C'
396 *
397 * --- Test CHESV_AA ---
398 *
399  IF( ifact.EQ.2 ) THEN
400  CALL clacpy( uplo, n, n, a, lda, afac, lda )
401  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
402 *
403 * Factor the matrix and solve the system using CHESV_AA.
404 *
405  srnamt = 'CHESV_AA '
406  CALL chesv_aa( uplo, n, nrhs, afac, lda, iwork,
407  \$ x, lda, work, lwork, info )
408 *
409 * Adjust the expected value of INFO to account for
410 * pivoting.
411 *
412  IF( izero.GT.0 ) THEN
413  j = 1
414  k = izero
415  100 CONTINUE
416  IF( j.EQ.k ) THEN
417  k = iwork( j )
418  ELSE IF( iwork( j ).EQ.k ) THEN
419  k = j
420  END IF
421  IF( j.LT.k ) THEN
422  j = j + 1
423  GO TO 100
424  END IF
425  ELSE
426  k = 0
427  END IF
428 *
429 * Check error code from CHESV_AA .
430 *
431  IF( info.NE.k ) THEN
432  CALL alaerh( path, 'CHESV_AA', info, k,
433  \$ uplo, n, n, -1, -1, nrhs,
434  \$ imat, nfail, nerrs, nout )
435  GO TO 120
436  ELSE IF( info.NE.0 ) THEN
437  GO TO 120
438  END IF
439 *
440 * Reconstruct matrix from factors and compute
441 * residual.
442 *
443  CALL chet01_aa( uplo, n, a, lda, afac, lda,
444  \$ iwork, ainv, lda, rwork,
445  \$ result( 1 ) )
446 *
447 * Compute residual of the computed solution.
448 *
449  CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
450  CALL cpot02( uplo, n, nrhs, a, lda, x, lda, work,
451  \$ lda, rwork, result( 2 ) )
452  nt = 2
453 *
454 * Print information about the tests that did not pass
455 * the threshold.
456 *
457  DO 110 k = 1, nt
458  IF( result( k ).GE.thresh ) THEN
459  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
460  \$ CALL aladhd( nout, path )
461  WRITE( nout, fmt = 9999 )'CHESV_AA ',
462  \$ uplo, n, imat, k, result( k )
463  nfail = nfail + 1
464  END IF
465  110 CONTINUE
466  nrun = nrun + nt
467  120 CONTINUE
468  END IF
469 *
470  150 CONTINUE
471 *
472  160 CONTINUE
473  170 CONTINUE
474  180 CONTINUE
475 *
476 * Print a summary of the results.
477 *
478  CALL alasvm( path, nout, nfail, nrun, nerrs )
479 *
480  9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i2,
481  \$ ', test ', i2, ', ratio =', g12.5 )
482  RETURN
483 *
484 * End of CDRVHE_AA
485 *
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:75
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:149
subroutine cpot02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
CPOT02
Definition: cpot02.f:129
subroutine cerrvx(PATH, NUNIT)
CERRVX
Definition: cerrvx.f:57
real function sget06(RCOND, RCONDC)
SGET06
Definition: sget06.f:57
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:83
subroutine chet01_aa(UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
CHET01_AA
Definition: chet01_aa.f:127
subroutine aladhd(IOUNIT, PATH)
ALADHD
Definition: aladhd.f:92
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:105
subroutine chesv_aa(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO)
CHESV_AA computes the solution to system of linear equations A * X = B for HE matrices ...
Definition: chesv_aa.f:164
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:334
subroutine chetrf_aa(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CHETRF_AA
Definition: chetrf_aa.f:134
real function clanhe(NORM, UPLO, N, A, LDA, WORK)
CLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix.
Definition: clanhe.f:126
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:211
subroutine cget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
CGET04
Definition: cget04.f:104
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
Definition: clatb4.f:123
Here is the call graph for this function:
Here is the caller graph for this function: