LAPACK  3.8.0 LAPACK: Linear Algebra PACKage

## ◆ cchkhe()

 subroutine cchkhe ( logical, dimension( * ) DOTYPE, integer NN, integer, dimension( * ) NVAL, integer NNB, integer, dimension( * ) NBVAL, integer NNS, integer, dimension( * ) NSVAL, real THRESH, logical TSTERR, integer NMAX, complex, dimension( * ) A, complex, dimension( * ) AFAC, complex, dimension( * ) AINV, complex, dimension( * ) B, complex, dimension( * ) X, complex, dimension( * ) XACT, complex, dimension( * ) WORK, real, dimension( * ) RWORK, integer, dimension( * ) IWORK, integer NOUT )

CCHKHE

Purpose:
` CCHKHE tests CHETRF, -TRI2, -TRS, -TRS2, -RFS, and -CON.`
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix dimension N.``` [in] NNB ``` NNB is INTEGER The number of values of NB contained in the vector NBVAL.``` [in] NBVAL ``` NBVAL is INTEGER array, dimension (NBVAL) The values of the blocksize NB.``` [in] NNS ``` NNS is INTEGER The number of values of NRHS contained in the vector NSVAL.``` [in] NSVAL ``` NSVAL is INTEGER array, dimension (NNS) The values of the number of right hand sides NRHS.``` [in] THRESH ``` THRESH is REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for N, used in dimensioning the work arrays.``` [out] A ` A is COMPLEX array, dimension (NMAX*NMAX)` [out] AFAC ` AFAC is COMPLEX array, dimension (NMAX*NMAX)` [out] AINV ` AINV is COMPLEX array, dimension (NMAX*NMAX)` [out] B ``` B is COMPLEX array, dimension (NMAX*NSMAX) where NSMAX is the largest entry in NSVAL.``` [out] X ` X is COMPLEX array, dimension (NMAX*NSMAX)` [out] XACT ` XACT is COMPLEX array, dimension (NMAX*NSMAX)` [out] WORK ` WORK is COMPLEX array, dimension (NMAX*max(3,NSMAX))` [out] RWORK ` RWORK is REAL array, dimension (max(NMAX,2*NSMAX))` [out] IWORK ` IWORK is INTEGER array, dimension (NMAX)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```
Date
November 2013

Definition at line 173 of file cchkhe.f.

173 *
174 * -- LAPACK test routine (version 3.5.0) --
175 * -- LAPACK is a software package provided by Univ. of Tennessee, --
176 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
177 * November 2013
178 *
179 * .. Scalar Arguments ..
180  LOGICAL tsterr
181  INTEGER nmax, nn, nnb, nns, nout
182  REAL thresh
183 * ..
184 * .. Array Arguments ..
185  LOGICAL dotype( * )
186  INTEGER iwork( * ), nbval( * ), nsval( * ), nval( * )
187  REAL rwork( * )
188  COMPLEX a( * ), afac( * ), ainv( * ), b( * ),
189  \$ work( * ), x( * ), xact( * )
190 * ..
191 *
192 * =====================================================================
193 *
194 * .. Parameters ..
195  REAL zero
196  parameter( zero = 0.0e+0 )
197  COMPLEX czero
198  parameter( czero = ( 0.0e+0, 0.0e+0 ) )
199  INTEGER ntypes
200  parameter( ntypes = 10 )
201  INTEGER ntests
202  parameter( ntests = 9 )
203 * ..
204 * .. Local Scalars ..
205  LOGICAL trfcon, zerot
206  CHARACTER dist, TYPE, uplo, xtype
207  CHARACTER*3 path
208  INTEGER i, i1, i2, imat, in, inb, info, ioff, irhs,
209  \$ iuplo, izero, j, k, kl, ku, lda, lwork, mode,
210  \$ n, nb, nerrs, nfail, nimat, nrhs, nrun, nt
211  REAL anorm, cndnum, rcond, rcondc
212 * ..
213 * .. Local Arrays ..
214  CHARACTER uplos( 2 )
215  INTEGER iseed( 4 ), iseedy( 4 )
216  REAL result( ntests )
217 * ..
218 * .. External Functions ..
219  REAL clanhe, sget06
220  EXTERNAL clanhe, sget06
221 * ..
222 * .. External Subroutines ..
223  EXTERNAL alaerh, alahd, alasum, cerrhe, cget04, checon,
226  \$ cpot03, cpot05, xlaenv
227 * ..
228 * .. Intrinsic Functions ..
229  INTRINSIC max, min
230 * ..
231 * .. Scalars in Common ..
232  LOGICAL lerr, ok
233  CHARACTER*32 srnamt
234  INTEGER infot, nunit
235 * ..
236 * .. Common blocks ..
237  COMMON / infoc / infot, nunit, ok, lerr
238  COMMON / srnamc / srnamt
239 * ..
240 * .. Data statements ..
241  DATA iseedy / 1988, 1989, 1990, 1991 /
242  DATA uplos / 'U', 'L' /
243 * ..
244 * .. Executable Statements ..
245 *
246 * Initialize constants and the random number seed.
247 *
248  path( 1: 1 ) = 'Complex precision'
249  path( 2: 3 ) = 'HE'
250  nrun = 0
251  nfail = 0
252  nerrs = 0
253  DO 10 i = 1, 4
254  iseed( i ) = iseedy( i )
255  10 CONTINUE
256 *
257 * Test the error exits
258 *
259  IF( tsterr )
260  \$ CALL cerrhe( path, nout )
261  infot = 0
262 *
263 * Set the minimum block size for which the block routine should
264 * be used, which will be later returned by ILAENV
265 *
266  CALL xlaenv( 2, 2 )
267 *
268 * Do for each value of N in NVAL
269 *
270  DO 180 in = 1, nn
271  n = nval( in )
272  lda = max( n, 1 )
273  xtype = 'N'
274  nimat = ntypes
275  IF( n.LE.0 )
276  \$ nimat = 1
277 *
278  izero = 0
279 *
280 * Do for each value of matrix type IMAT
281 *
282  DO 170 imat = 1, nimat
283 *
284 * Do the tests only if DOTYPE( IMAT ) is true.
285 *
286  IF( .NOT.dotype( imat ) )
287  \$ GO TO 170
288 *
289 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
290 *
291  zerot = imat.GE.3 .AND. imat.LE.6
292  IF( zerot .AND. n.LT.imat-2 )
293  \$ GO TO 170
294 *
295 * Do first for UPLO = 'U', then for UPLO = 'L'
296 *
297  DO 160 iuplo = 1, 2
298  uplo = uplos( iuplo )
299 *
300 * Begin generate test matrix A.
301 *
302 *
303 * Set up parameters with CLATB4 for the matrix generator
304 * based on the type of matrix to be generated.
305 *
306  CALL clatb4( path, imat, n, n, TYPE, kl, ku, anorm, mode,
307  \$ cndnum, dist )
308 *
309 * Generate a matrix with CLATMS.
310 *
311  srnamt = 'CLATMS'
312  CALL clatms( n, n, dist, iseed, TYPE, rwork, mode,
313  \$ cndnum, anorm, kl, ku, uplo, a, lda, work,
314  \$ info )
315 *
316 * Check error code from CLATMS and handle error.
317 *
318  IF( info.NE.0 ) THEN
319  CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n, -1,
320  \$ -1, -1, imat, nfail, nerrs, nout )
321 *
322 * Skip all tests for this generated matrix
323 *
324  GO TO 160
325  END IF
326 *
327 * For matrix types 3-6, zero one or more rows and
328 * columns of the matrix to test that INFO is returned
329 * correctly.
330 *
331  IF( zerot ) THEN
332  IF( imat.EQ.3 ) THEN
333  izero = 1
334  ELSE IF( imat.EQ.4 ) THEN
335  izero = n
336  ELSE
337  izero = n / 2 + 1
338  END IF
339 *
340  IF( imat.LT.6 ) THEN
341 *
342 * Set row and column IZERO to zero.
343 *
344  IF( iuplo.EQ.1 ) THEN
345  ioff = ( izero-1 )*lda
346  DO 20 i = 1, izero - 1
347  a( ioff+i ) = czero
348  20 CONTINUE
349  ioff = ioff + izero
350  DO 30 i = izero, n
351  a( ioff ) = czero
352  ioff = ioff + lda
353  30 CONTINUE
354  ELSE
355  ioff = izero
356  DO 40 i = 1, izero - 1
357  a( ioff ) = czero
358  ioff = ioff + lda
359  40 CONTINUE
360  ioff = ioff - izero
361  DO 50 i = izero, n
362  a( ioff+i ) = czero
363  50 CONTINUE
364  END IF
365  ELSE
366  IF( iuplo.EQ.1 ) THEN
367 *
368 * Set the first IZERO rows and columns to zero.
369 *
370  ioff = 0
371  DO 70 j = 1, n
372  i2 = min( j, izero )
373  DO 60 i = 1, i2
374  a( ioff+i ) = czero
375  60 CONTINUE
376  ioff = ioff + lda
377  70 CONTINUE
378  ELSE
379 *
380 * Set the last IZERO rows and columns to zero.
381 *
382  ioff = 0
383  DO 90 j = 1, n
384  i1 = max( j, izero )
385  DO 80 i = i1, n
386  a( ioff+i ) = czero
387  80 CONTINUE
388  ioff = ioff + lda
389  90 CONTINUE
390  END IF
391  END IF
392  ELSE
393  izero = 0
394  END IF
395 *
396 * Set the imaginary part of the diagonals.
397 *
398  CALL claipd( n, a, lda+1, 0 )
399 *
400 * End generate test matrix A.
401 *
402 *
403 * Do for each value of NB in NBVAL
404 *
405  DO 150 inb = 1, nnb
406 *
407 * Set the optimal blocksize, which will be later
408 * returned by ILAENV.
409 *
410  nb = nbval( inb )
411  CALL xlaenv( 1, nb )
412 *
413 * Copy the test matrix A into matrix AFAC which
414 * will be factorized in place. This is needed to
415 * preserve the test matrix A for subsequent tests.
416 *
417  CALL clacpy( uplo, n, n, a, lda, afac, lda )
418 *
419 * Compute the L*D*L**T or U*D*U**T factorization of the
420 * matrix. IWORK stores details of the interchanges and
421 * the block structure of D. AINV is a work array for
422 * block factorization, LWORK is the length of AINV.
423 *
424  lwork = max( 2, nb )*lda
425  srnamt = 'CHETRF'
426  CALL chetrf( uplo, n, afac, lda, iwork, ainv, lwork,
427  \$ info )
428 *
429 * Adjust the expected value of INFO to account for
430 * pivoting.
431 *
432  k = izero
433  IF( k.GT.0 ) THEN
434  100 CONTINUE
435  IF( iwork( k ).LT.0 ) THEN
436  IF( iwork( k ).NE.-k ) THEN
437  k = -iwork( k )
438  GO TO 100
439  END IF
440  ELSE IF( iwork( k ).NE.k ) THEN
441  k = iwork( k )
442  GO TO 100
443  END IF
444  END IF
445 *
446 * Check error code from CHETRF and handle error.
447 *
448  IF( info.NE.k )
449  \$ CALL alaerh( path, 'CHETRF', info, k, uplo, n, n,
450  \$ -1, -1, nb, imat, nfail, nerrs, nout )
451 *
452 * Set the condition estimate flag if the INFO is not 0.
453 *
454  IF( info.NE.0 ) THEN
455  trfcon = .true.
456  ELSE
457  trfcon = .false.
458  END IF
459 *
460 *+ TEST 1
461 * Reconstruct matrix from factors and compute residual.
462 *
463  CALL chet01( uplo, n, a, lda, afac, lda, iwork, ainv,
464  \$ lda, rwork, result( 1 ) )
465  nt = 1
466 *
467 *+ TEST 2
468 * Form the inverse and compute the residual,
469 * if the factorization was competed without INFO > 0
470 * (i.e. there is no zero rows and columns).
471 * Do it only for the first block size.
472 *
473  IF( inb.EQ.1 .AND. .NOT.trfcon ) THEN
474  CALL clacpy( uplo, n, n, afac, lda, ainv, lda )
475  srnamt = 'CHETRI2'
476  lwork = (n+nb+1)*(nb+3)
477  CALL chetri2( uplo, n, ainv, lda, iwork, work,
478  \$ lwork, info )
479 *
480 * Check error code from CHETRI2 and handle error.
481 *
482  IF( info.NE.0 )
483  \$ CALL alaerh( path, 'CHETRI2', info, -1, uplo, n,
484  \$ n, -1, -1, -1, imat, nfail, nerrs,
485  \$ nout )
486 *
487 * Compute the residual for a symmetric matrix times
488 * its inverse.
489 *
490  CALL cpot03( uplo, n, a, lda, ainv, lda, work, lda,
491  \$ rwork, rcondc, result( 2 ) )
492  nt = 2
493  END IF
494 *
495 * Print information about the tests that did not pass
496 * the threshold.
497 *
498  DO 110 k = 1, nt
499  IF( result( k ).GE.thresh ) THEN
500  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
501  \$ CALL alahd( nout, path )
502  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
503  \$ result( k )
504  nfail = nfail + 1
505  END IF
506  110 CONTINUE
507  nrun = nrun + nt
508 *
509 * Skip the other tests if this is not the first block
510 * size.
511 *
512  IF( inb.GT.1 )
513  \$ GO TO 150
514 *
515 * Do only the condition estimate if INFO is not 0.
516 *
517  IF( trfcon ) THEN
518  rcondc = zero
519  GO TO 140
520  END IF
521 *
522 * Do for each value of NRHS in NSVAL.
523 *
524  DO 130 irhs = 1, nns
525  nrhs = nsval( irhs )
526 *
527 *+ TEST 3 (Using TRS)
528 * Solve and compute residual for A * X = B.
529 *
530 * Choose a set of NRHS random solution vectors
531 * stored in XACT and set up the right hand side B
532 *
533  srnamt = 'CLARHS'
534  CALL clarhs( path, xtype, uplo, ' ', n, n, kl, ku,
535  \$ nrhs, a, lda, xact, lda, b, lda,
536  \$ iseed, info )
537  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
538 *
539  srnamt = 'CHETRS'
540  CALL chetrs( uplo, n, nrhs, afac, lda, iwork, x,
541  \$ lda, info )
542 *
543 * Check error code from CHETRS and handle error.
544 *
545  IF( info.NE.0 )
546  \$ CALL alaerh( path, 'CHETRS', info, 0, uplo, n,
547  \$ n, -1, -1, nrhs, imat, nfail,
548  \$ nerrs, nout )
549 *
550  CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
551 *
552 * Compute the residual for the solution
553 *
554  CALL cpot02( uplo, n, nrhs, a, lda, x, lda, work,
555  \$ lda, rwork, result( 3 ) )
556 *
557 *+ TEST 4 (Using TRS2)
558 * Solve and compute residual for A * X = B.
559 *
560 * Choose a set of NRHS random solution vectors
561 * stored in XACT and set up the right hand side B
562 *
563  srnamt = 'CLARHS'
564  CALL clarhs( path, xtype, uplo, ' ', n, n, kl, ku,
565  \$ nrhs, a, lda, xact, lda, b, lda,
566  \$ iseed, info )
567  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
568 *
569  srnamt = 'CHETRS2'
570  CALL chetrs2( uplo, n, nrhs, afac, lda, iwork, x,
571  \$ lda, work, info )
572 *
573 * Check error code from CHETRS2 and handle error.
574 *
575  IF( info.NE.0 )
576  \$ CALL alaerh( path, 'CHETRS2', info, 0, uplo, n,
577  \$ n, -1, -1, nrhs, imat, nfail,
578  \$ nerrs, nout )
579 *
580  CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
581 *
582 * Compute the residual for the solution
583 *
584  CALL cpot02( uplo, n, nrhs, a, lda, x, lda, work,
585  \$ lda, rwork, result( 4 ) )
586 *
587 *+ TEST 5
588 * Check solution from generated exact solution.
589 *
590  CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
591  \$ result( 5 ) )
592 *
593 *+ TESTS 6, 7, and 8
594 * Use iterative refinement to improve the solution.
595 *
596  srnamt = 'CHERFS'
597  CALL cherfs( uplo, n, nrhs, a, lda, afac, lda,
598  \$ iwork, b, lda, x, lda, rwork,
599  \$ rwork( nrhs+1 ), work,
600  \$ rwork( 2*nrhs+1 ), info )
601 *
602 * Check error code from CHERFS and handle error.
603 *
604  IF( info.NE.0 )
605  \$ CALL alaerh( path, 'CHERFS', info, 0, uplo, n,
606  \$ n, -1, -1, nrhs, imat, nfail,
607  \$ nerrs, nout )
608 *
609  CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
610  \$ result( 6 ) )
611  CALL cpot05( uplo, n, nrhs, a, lda, b, lda, x, lda,
612  \$ xact, lda, rwork, rwork( nrhs+1 ),
613  \$ result( 7 ) )
614 *
615 * Print information about the tests that did not pass
616 * the threshold.
617 *
618  DO 120 k = 3, 8
619  IF( result( k ).GE.thresh ) THEN
620  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
621  \$ CALL alahd( nout, path )
622  WRITE( nout, fmt = 9998 )uplo, n, nrhs,
623  \$ imat, k, result( k )
624  nfail = nfail + 1
625  END IF
626  120 CONTINUE
627  nrun = nrun + 6
628 *
629 * End do for each value of NRHS in NSVAL.
630 *
631  130 CONTINUE
632 *
633 *+ TEST 9
634 * Get an estimate of RCOND = 1/CNDNUM.
635 *
636  140 CONTINUE
637  anorm = clanhe( '1', uplo, n, a, lda, rwork )
638  srnamt = 'CHECON'
639  CALL checon( uplo, n, afac, lda, iwork, anorm, rcond,
640  \$ work, info )
641 *
642 * Check error code from CHECON and handle error.
643 *
644  IF( info.NE.0 )
645  \$ CALL alaerh( path, 'CHECON', info, 0, uplo, n, n,
646  \$ -1, -1, -1, imat, nfail, nerrs, nout )
647 *
648 * Compute the test ratio to compare values of RCOND
649 *
650  result( 9 ) = sget06( rcond, rcondc )
651 *
652 * Print information about the tests that did not pass
653 * the threshold.
654 *
655  IF( result( 9 ).GE.thresh ) THEN
656  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
657  \$ CALL alahd( nout, path )
658  WRITE( nout, fmt = 9997 )uplo, n, imat, 8,
659  \$ result( 9 )
660  nfail = nfail + 1
661  END IF
662  nrun = nrun + 1
663  150 CONTINUE
664  160 CONTINUE
665  170 CONTINUE
666  180 CONTINUE
667 *
668 * Print a summary of the results.
669 *
670  CALL alasum( path, nout, nfail, nrun, nerrs )
671 *
672  9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
673  \$ i2, ', test ', i2, ', ratio =', g12.5 )
674  9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
675  \$ i2, ', test(', i2, ') =', g12.5 )
676  9997 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ',', 10x, ' type ', i2,
677  \$ ', test(', i2, ') =', g12.5 )
678  RETURN
679 *
680 * End of CCHKHE
681 *
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine chetrs2(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, INFO)
CHETRS2
Definition: chetrs2.f:129
subroutine claipd(N, A, INDA, VINDA)
CLAIPD
Definition: claipd.f:85
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:149
subroutine chetri2(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CHETRI2
Definition: chetri2.f:129
subroutine chet01(UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
CHET01
Definition: chet01.f:128
subroutine cpot02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
CPOT02
Definition: cpot02.f:129
real function sget06(RCOND, RCONDC)
SGET06
Definition: sget06.f:57
subroutine checon(UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, INFO)
CHECON
Definition: checon.f:127
subroutine cherfs(UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
CHERFS
Definition: cherfs.f:194
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:83
subroutine cerrhe(PATH, NUNIT)
CERRHE
Definition: cerrhe.f:57
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:105
subroutine cpot05(UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
CPOT05
Definition: cpot05.f:167
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:334
subroutine chetrs(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
CHETRS
Definition: chetrs.f:122
real function clanhe(NORM, UPLO, N, A, LDA, WORK)
CLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix.
Definition: clanhe.f:126
subroutine chetrf(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CHETRF
Definition: chetrf.f:179
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:211
subroutine cpot03(UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK, RCOND, RESID)
CPOT03
Definition: cpot03.f:128
subroutine cget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
CGET04
Definition: cget04.f:104
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:75
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
Definition: clatb4.f:123
Here is the call graph for this function:
Here is the caller graph for this function: