LAPACK  3.8.0 LAPACK: Linear Algebra PACKage

## ◆ cchktp()

 subroutine cchktp ( logical, dimension( * ) DOTYPE, integer NN, integer, dimension( * ) NVAL, integer NNS, integer, dimension( * ) NSVAL, real THRESH, logical TSTERR, integer NMAX, complex, dimension( * ) AP, complex, dimension( * ) AINVP, complex, dimension( * ) B, complex, dimension( * ) X, complex, dimension( * ) XACT, complex, dimension( * ) WORK, real, dimension( * ) RWORK, integer NOUT )

CCHKTP

Purpose:
CCHKTP tests CTPTRI, -TRS, -RFS, and -CON, and CLATPS
Parameters
 [in] DOTYPE DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. [in] NN NN is INTEGER The number of values of N contained in the vector NVAL. [in] NVAL NVAL is INTEGER array, dimension (NN) The values of the matrix column dimension N. [in] NNS NNS is INTEGER The number of values of NRHS contained in the vector NSVAL. [in] NSVAL NSVAL is INTEGER array, dimension (NNS) The values of the number of right hand sides NRHS. [in] THRESH THRESH is REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0. [in] TSTERR TSTERR is LOGICAL Flag that indicates whether error exits are to be tested. [in] NMAX NMAX is INTEGER The leading dimension of the work arrays. NMAX >= the maximumm value of N in NVAL. [out] AP AP is COMPLEX array, dimension (NMAX*(NMAX+1)/2) [out] AINVP AINVP is COMPLEX array, dimension (NMAX*(NMAX+1)/2) [out] B B is COMPLEX array, dimension (NMAX*NSMAX) where NSMAX is the largest entry in NSVAL. [out] X X is COMPLEX array, dimension (NMAX*NSMAX) [out] XACT XACT is COMPLEX array, dimension (NMAX*NSMAX) [out] WORK WORK is COMPLEX array, dimension (NMAX*max(3,NSMAX)) [out] RWORK RWORK is REAL array, dimension (max(NMAX,2*NSMAX)) [in] NOUT NOUT is INTEGER The unit number for output.
Date
December 2016

Definition at line 153 of file cchktp.f.

153 *
154 * -- LAPACK test routine (version 3.7.0) --
155 * -- LAPACK is a software package provided by Univ. of Tennessee, --
156 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
157 * December 2016
158 *
159 * .. Scalar Arguments ..
160  LOGICAL tsterr
161  INTEGER nmax, nn, nns, nout
162  REAL thresh
163 * ..
164 * .. Array Arguments ..
165  LOGICAL dotype( * )
166  INTEGER nsval( * ), nval( * )
167  REAL rwork( * )
168  COMPLEX ainvp( * ), ap( * ), b( * ), work( * ), x( * ),
169  \$ xact( * )
170 * ..
171 *
172 * =====================================================================
173 *
174 * .. Parameters ..
175  INTEGER ntype1, ntypes
176  parameter( ntype1 = 10, ntypes = 18 )
177  INTEGER ntests
178  parameter( ntests = 9 )
179  INTEGER ntran
180  parameter( ntran = 3 )
181  REAL one, zero
182  parameter( one = 1.0e+0, zero = 0.0e+0 )
183 * ..
184 * .. Local Scalars ..
185  CHARACTER diag, norm, trans, uplo, xtype
186  CHARACTER*3 path
187  INTEGER i, idiag, imat, in, info, irhs, itran, iuplo,
188  \$ k, lap, lda, n, nerrs, nfail, nrhs, nrun
189  REAL ainvnm, anorm, rcond, rcondc, rcondi, rcondo,
190  \$ scale
191 * ..
192 * .. Local Arrays ..
193  CHARACTER transs( ntran ), uplos( 2 )
194  INTEGER iseed( 4 ), iseedy( 4 )
195  REAL result( ntests )
196 * ..
197 * .. External Functions ..
198  LOGICAL lsame
199  REAL clantp
200  EXTERNAL lsame, clantp
201 * ..
202 * .. External Subroutines ..
203  EXTERNAL alaerh, alahd, alasum, ccopy, cerrtr, cget04,
206  \$ ctptrs
207 * ..
208 * .. Scalars in Common ..
209  LOGICAL lerr, ok
210  CHARACTER*32 srnamt
211  INTEGER infot, iounit
212 * ..
213 * .. Common blocks ..
214  COMMON / infoc / infot, iounit, ok, lerr
215  COMMON / srnamc / srnamt
216 * ..
217 * .. Intrinsic Functions ..
218  INTRINSIC max
219 * ..
220 * .. Data statements ..
221  DATA iseedy / 1988, 1989, 1990, 1991 /
222  DATA uplos / 'U', 'L' / , transs / 'N', 'T', 'C' /
223 * ..
224 * .. Executable Statements ..
225 *
226 * Initialize constants and the random number seed.
227 *
228  path( 1: 1 ) = 'Complex precision'
229  path( 2: 3 ) = 'TP'
230  nrun = 0
231  nfail = 0
232  nerrs = 0
233  DO 10 i = 1, 4
234  iseed( i ) = iseedy( i )
235  10 CONTINUE
236 *
237 * Test the error exits
238 *
239  IF( tsterr )
240  \$ CALL cerrtr( path, nout )
241  infot = 0
242 *
243  DO 110 in = 1, nn
244 *
245 * Do for each value of N in NVAL
246 *
247  n = nval( in )
248  lda = max( 1, n )
249  lap = lda*( lda+1 ) / 2
250  xtype = 'N'
251 *
252  DO 70 imat = 1, ntype1
253 *
254 * Do the tests only if DOTYPE( IMAT ) is true.
255 *
256  IF( .NOT.dotype( imat ) )
257  \$ GO TO 70
258 *
259  DO 60 iuplo = 1, 2
260 *
261 * Do first for UPLO = 'U', then for UPLO = 'L'
262 *
263  uplo = uplos( iuplo )
264 *
265 * Call CLATTP to generate a triangular test matrix.
266 *
267  srnamt = 'CLATTP'
268  CALL clattp( imat, uplo, 'No transpose', diag, iseed, n,
269  \$ ap, x, work, rwork, info )
270 *
271 * Set IDIAG = 1 for non-unit matrices, 2 for unit.
272 *
273  IF( lsame( diag, 'N' ) ) THEN
274  idiag = 1
275  ELSE
276  idiag = 2
277  END IF
278 *
279 *+ TEST 1
280 * Form the inverse of A.
281 *
282  IF( n.GT.0 )
283  \$ CALL ccopy( lap, ap, 1, ainvp, 1 )
284  srnamt = 'CTPTRI'
285  CALL ctptri( uplo, diag, n, ainvp, info )
286 *
287 * Check error code from CTPTRI.
288 *
289  IF( info.NE.0 )
290  \$ CALL alaerh( path, 'CTPTRI', info, 0, uplo // diag, n,
291  \$ n, -1, -1, -1, imat, nfail, nerrs, nout )
292 *
293 * Compute the infinity-norm condition number of A.
294 *
295  anorm = clantp( 'I', uplo, diag, n, ap, rwork )
296  ainvnm = clantp( 'I', uplo, diag, n, ainvp, rwork )
297  IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
298  rcondi = one
299  ELSE
300  rcondi = ( one / anorm ) / ainvnm
301  END IF
302 *
303 * Compute the residual for the triangular matrix times its
304 * inverse. Also compute the 1-norm condition number of A.
305 *
306  CALL ctpt01( uplo, diag, n, ap, ainvp, rcondo, rwork,
307  \$ result( 1 ) )
308 *
309 * Print the test ratio if it is .GE. THRESH.
310 *
311  IF( result( 1 ).GE.thresh ) THEN
312  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
313  \$ CALL alahd( nout, path )
314  WRITE( nout, fmt = 9999 )uplo, diag, n, imat, 1,
315  \$ result( 1 )
316  nfail = nfail + 1
317  END IF
318  nrun = nrun + 1
319 *
320  DO 40 irhs = 1, nns
321  nrhs = nsval( irhs )
322  xtype = 'N'
323 *
324  DO 30 itran = 1, ntran
325 *
326 * Do for op(A) = A, A**T, or A**H.
327 *
328  trans = transs( itran )
329  IF( itran.EQ.1 ) THEN
330  norm = 'O'
331  rcondc = rcondo
332  ELSE
333  norm = 'I'
334  rcondc = rcondi
335  END IF
336 *
337 *+ TEST 2
338 * Solve and compute residual for op(A)*x = b.
339 *
340  srnamt = 'CLARHS'
341  CALL clarhs( path, xtype, uplo, trans, n, n, 0,
342  \$ idiag, nrhs, ap, lap, xact, lda, b,
343  \$ lda, iseed, info )
344  xtype = 'C'
345  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
346 *
347  srnamt = 'CTPTRS'
348  CALL ctptrs( uplo, trans, diag, n, nrhs, ap, x,
349  \$ lda, info )
350 *
351 * Check error code from CTPTRS.
352 *
353  IF( info.NE.0 )
354  \$ CALL alaerh( path, 'CTPTRS', info, 0,
355  \$ uplo // trans // diag, n, n, -1,
356  \$ -1, -1, imat, nfail, nerrs, nout )
357 *
358  CALL ctpt02( uplo, trans, diag, n, nrhs, ap, x,
359  \$ lda, b, lda, work, rwork,
360  \$ result( 2 ) )
361 *
362 *+ TEST 3
363 * Check solution from generated exact solution.
364 *
365  CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
366  \$ result( 3 ) )
367 *
368 *+ TESTS 4, 5, and 6
369 * Use iterative refinement to improve the solution and
370 * compute error bounds.
371 *
372  srnamt = 'CTPRFS'
373  CALL ctprfs( uplo, trans, diag, n, nrhs, ap, b,
374  \$ lda, x, lda, rwork, rwork( nrhs+1 ),
375  \$ work, rwork( 2*nrhs+1 ), info )
376 *
377 * Check error code from CTPRFS.
378 *
379  IF( info.NE.0 )
380  \$ CALL alaerh( path, 'CTPRFS', info, 0,
381  \$ uplo // trans // diag, n, n, -1,
382  \$ -1, nrhs, imat, nfail, nerrs,
383  \$ nout )
384 *
385  CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
386  \$ result( 4 ) )
387  CALL ctpt05( uplo, trans, diag, n, nrhs, ap, b,
388  \$ lda, x, lda, xact, lda, rwork,
389  \$ rwork( nrhs+1 ), result( 5 ) )
390 *
391 * Print information about the tests that did not pass
392 * the threshold.
393 *
394  DO 20 k = 2, 6
395  IF( result( k ).GE.thresh ) THEN
396  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
397  \$ CALL alahd( nout, path )
398  WRITE( nout, fmt = 9998 )uplo, trans, diag,
399  \$ n, nrhs, imat, k, result( k )
400  nfail = nfail + 1
401  END IF
402  20 CONTINUE
403  nrun = nrun + 5
404  30 CONTINUE
405  40 CONTINUE
406 *
407 *+ TEST 7
408 * Get an estimate of RCOND = 1/CNDNUM.
409 *
410  DO 50 itran = 1, 2
411  IF( itran.EQ.1 ) THEN
412  norm = 'O'
413  rcondc = rcondo
414  ELSE
415  norm = 'I'
416  rcondc = rcondi
417  END IF
418  srnamt = 'CTPCON'
419  CALL ctpcon( norm, uplo, diag, n, ap, rcond, work,
420  \$ rwork, info )
421 *
422 * Check error code from CTPCON.
423 *
424  IF( info.NE.0 )
425  \$ CALL alaerh( path, 'CTPCON', info, 0,
426  \$ norm // uplo // diag, n, n, -1, -1,
427  \$ -1, imat, nfail, nerrs, nout )
428 *
429  CALL ctpt06( rcond, rcondc, uplo, diag, n, ap, rwork,
430  \$ result( 7 ) )
431 *
432 * Print the test ratio if it is .GE. THRESH.
433 *
434  IF( result( 7 ).GE.thresh ) THEN
435  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
436  \$ CALL alahd( nout, path )
437  WRITE( nout, fmt = 9997 ) 'CTPCON', norm, uplo,
438  \$ diag, n, imat, 7, result( 7 )
439  nfail = nfail + 1
440  END IF
441  nrun = nrun + 1
442  50 CONTINUE
443  60 CONTINUE
444  70 CONTINUE
445 *
446 * Use pathological test matrices to test CLATPS.
447 *
448  DO 100 imat = ntype1 + 1, ntypes
449 *
450 * Do the tests only if DOTYPE( IMAT ) is true.
451 *
452  IF( .NOT.dotype( imat ) )
453  \$ GO TO 100
454 *
455  DO 90 iuplo = 1, 2
456 *
457 * Do first for UPLO = 'U', then for UPLO = 'L'
458 *
459  uplo = uplos( iuplo )
460  DO 80 itran = 1, ntran
461 *
462 * Do for op(A) = A, A**T, or A**H.
463 *
464  trans = transs( itran )
465 *
466 * Call CLATTP to generate a triangular test matrix.
467 *
468  srnamt = 'CLATTP'
469  CALL clattp( imat, uplo, trans, diag, iseed, n, ap, x,
470  \$ work, rwork, info )
471 *
472 *+ TEST 8
473 * Solve the system op(A)*x = b.
474 *
475  srnamt = 'CLATPS'
476  CALL ccopy( n, x, 1, b, 1 )
477  CALL clatps( uplo, trans, diag, 'N', n, ap, b, scale,
478  \$ rwork, info )
479 *
480 * Check error code from CLATPS.
481 *
482  IF( info.NE.0 )
483  \$ CALL alaerh( path, 'CLATPS', info, 0,
484  \$ uplo // trans // diag // 'N', n, n,
485  \$ -1, -1, -1, imat, nfail, nerrs, nout )
486 *
487  CALL ctpt03( uplo, trans, diag, n, 1, ap, scale,
488  \$ rwork, one, b, lda, x, lda, work,
489  \$ result( 8 ) )
490 *
491 *+ TEST 9
492 * Solve op(A)*x = b again with NORMIN = 'Y'.
493 *
494  CALL ccopy( n, x, 1, b( n+1 ), 1 )
495  CALL clatps( uplo, trans, diag, 'Y', n, ap, b( n+1 ),
496  \$ scale, rwork, info )
497 *
498 * Check error code from CLATPS.
499 *
500  IF( info.NE.0 )
501  \$ CALL alaerh( path, 'CLATPS', info, 0,
502  \$ uplo // trans // diag // 'Y', n, n,
503  \$ -1, -1, -1, imat, nfail, nerrs, nout )
504 *
505  CALL ctpt03( uplo, trans, diag, n, 1, ap, scale,
506  \$ rwork, one, b( n+1 ), lda, x, lda, work,
507  \$ result( 9 ) )
508 *
509 * Print information about the tests that did not pass
510 * the threshold.
511 *
512  IF( result( 8 ).GE.thresh ) THEN
513  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
514  \$ CALL alahd( nout, path )
515  WRITE( nout, fmt = 9996 )'CLATPS', uplo, trans,
516  \$ diag, 'N', n, imat, 8, result( 8 )
517  nfail = nfail + 1
518  END IF
519  IF( result( 9 ).GE.thresh ) THEN
520  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
521  \$ CALL alahd( nout, path )
522  WRITE( nout, fmt = 9996 )'CLATPS', uplo, trans,
523  \$ diag, 'Y', n, imat, 9, result( 9 )
524  nfail = nfail + 1
525  END IF
526  nrun = nrun + 2
527  80 CONTINUE
528  90 CONTINUE
529  100 CONTINUE
530  110 CONTINUE
531 *
532 * Print a summary of the results.
533 *
534  CALL alasum( path, nout, nfail, nrun, nerrs )
535 *
536  9999 FORMAT( ' UPLO=''', a1, ''', DIAG=''', a1, ''', N=', i5,
537  \$ ', type ', i2, ', test(', i2, ')= ', g12.5 )
538  9998 FORMAT( ' UPLO=''', a1, ''', TRANS=''', a1, ''', DIAG=''', a1,
539  \$ ''', N=', i5, ''', NRHS=', i5, ', type ', i2, ', test(',
540  \$ i2, ')= ', g12.5 )
541  9997 FORMAT( 1x, a, '( ''', a1, ''', ''', a1, ''', ''', a1, ''',',
542  \$ i5, ', ... ), type ', i2, ', test(', i2, ')=', g12.5 )
543  9996 FORMAT( 1x, a, '( ''', a1, ''', ''', a1, ''', ''', a1, ''', ''',
544  \$ a1, ''',', i5, ', ... ), type ', i2, ', test(', i2, ')=',
545  \$ g12.5 )
546  RETURN
547 *
548 * End of CCHKTP
549 *
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine ctpt02(UPLO, TRANS, DIAG, N, NRHS, AP, X, LDX, B, LDB, WORK, RWORK, RESID)
CTPT02
Definition: ctpt02.f:151
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:149
subroutine cerrtr(PATH, NUNIT)
CERRTR
Definition: cerrtr.f:56
subroutine clatps(UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE, CNORM, INFO)
CLATPS solves a triangular system of equations with the matrix held in packed storage.
Definition: clatps.f:233
subroutine ctptrs(UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, INFO)
CTPTRS
Definition: ctptrs.f:132
subroutine ctpt06(RCOND, RCONDC, UPLO, DIAG, N, AP, RWORK, RAT)
CTPT06
Definition: ctpt06.f:114
subroutine ctprfs(UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
CTPRFS
Definition: ctprfs.f:176
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
subroutine ctpcon(NORM, UPLO, DIAG, N, AP, RCOND, WORK, RWORK, INFO)
CTPCON
Definition: ctpcon.f:132
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:105
subroutine ccopy(N, CX, INCX, CY, INCY)
CCOPY
Definition: ccopy.f:83
subroutine ctpt05(UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
CTPT05
Definition: ctpt05.f:177
subroutine ctpt03(UPLO, TRANS, DIAG, N, NRHS, AP, SCALE, CNORM, TSCAL, X, LDX, B, LDB, WORK, RESID)
CTPT03
Definition: ctpt03.f:164
real function clantp(NORM, UPLO, DIAG, N, AP, WORK)
CLANTP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular matrix supplied in packed form.
Definition: clantp.f:127
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:211
subroutine cget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
CGET04
Definition: cget04.f:104
subroutine ctpt01(UPLO, DIAG, N, AP, AINVP, RCOND, RWORK, RESID)
CTPT01
Definition: ctpt01.f:111
subroutine clattp(IMAT, UPLO, TRANS, DIAG, ISEED, N, AP, B, WORK, RWORK, INFO)
CLATTP
Definition: clattp.f:133
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:75
subroutine ctptri(UPLO, DIAG, N, AP, INFO)
CTPTRI
Definition: ctptri.f:119
Here is the call graph for this function:
Here is the caller graph for this function: