LAPACK  3.8.0 LAPACK: Linear Algebra PACKage

## ◆ cdrvsy_rk()

 subroutine cdrvsy_rk ( logical, dimension( * ) DOTYPE, integer NN, integer, dimension( * ) NVAL, integer NRHS, real THRESH, logical TSTERR, integer NMAX, complex, dimension( * ) A, complex, dimension( * ) AFAC, complex, dimension( * ) E, complex, dimension( * ) AINV, complex, dimension( * ) B, complex, dimension( * ) X, complex, dimension( * ) XACT, complex, dimension( * ) WORK, real, dimension( * ) RWORK, integer, dimension( * ) IWORK, integer NOUT )

CDRVSY_RK

Purpose:
` CDRVSY_RK tests the driver routines CSYSV_RK.`
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix dimension N.``` [in] NRHS ``` NRHS is INTEGER The number of right hand side vectors to be generated for each linear system.``` [in] THRESH ``` THRESH is REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for N, used in dimensioning the work arrays.``` [out] A ` A is COMPLEX array, dimension (NMAX*NMAX)` [out] AFAC ` AFAC is COMPLEX array, dimension (NMAX*NMAX)` [out] E ``` E is COMPLEX array, dimension (NMAX) \param[out] AINV \verbatim AINV is COMPLEX array, dimension (NMAX*NMAX)``` [out] B ` B is COMPLEX array, dimension (NMAX*NRHS)` [out] X ` X is COMPLEX array, dimension (NMAX*NRHS)` [out] XACT ` XACT is COMPLEX array, dimension (NMAX*NRHS)` [out] WORK ` ` [out] RWORK ` RWORK is REAL array, dimension (NMAX+2*NRHS)` [out] IWORK ` IWORK is INTEGER array, dimension (NMAX)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```
Date
December 2016

Definition at line 158 of file cdrvsy_rk.f.

158 *
159 * -- LAPACK test routine (version 3.7.0) --
160 * -- LAPACK is a software package provided by Univ. of Tennessee, --
161 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
162 * December 2016
163 *
164 * .. Scalar Arguments ..
165  LOGICAL tsterr
166  INTEGER nmax, nn, nout, nrhs
167  REAL thresh
168 * ..
169 * .. Array Arguments ..
170  LOGICAL dotype( * )
171  INTEGER iwork( * ), nval( * )
172  REAL rwork( * )
173  COMPLEX a( * ), afac( * ), ainv( * ), b( * ), e( * ),
174  \$ work( * ), x( * ), xact( * )
175 * ..
176 *
177 * =====================================================================
178 *
179 * .. Parameters ..
180  REAL one, zero
181  parameter( one = 1.0e+0, zero = 0.0e+0 )
182  INTEGER ntypes, ntests
183  parameter( ntypes = 11, ntests = 3 )
184  INTEGER nfact
185  parameter( nfact = 2 )
186 * ..
187 * .. Local Scalars ..
188  LOGICAL zerot
189  CHARACTER dist, fact, TYPE, uplo, xtype
190  CHARACTER*3 matpath, path
191  INTEGER i, i1, i2, ifact, imat, in, info, ioff, iuplo,
192  \$ izero, j, k, kl, ku, lda, lwork, mode, n,
193  \$ nb, nbmin, nerrs, nfail, nimat, nrun, nt
194  REAL ainvnm, anorm, cndnum, rcondc
195 * ..
196 * .. Local Arrays ..
197  CHARACTER facts( nfact ), uplos( 2 )
198  INTEGER iseed( 4 ), iseedy( 4 )
199  REAL result( ntests )
200
201 * ..
202 * .. External Functions ..
203  REAL clansy
204  EXTERNAL clansy
205 * ..
206 * .. External Subroutines ..
207  EXTERNAL aladhd, alaerh, alasvm, xlaenv, cerrvx, cget04,
210 * ..
211 * .. Scalars in Common ..
212  LOGICAL lerr, ok
213  CHARACTER*32 srnamt
214  INTEGER infot, nunit
215 * ..
216 * .. Common blocks ..
217  COMMON / infoc / infot, nunit, ok, lerr
218  COMMON / srnamc / srnamt
219 * ..
220 * .. Intrinsic Functions ..
221  INTRINSIC max, min
222 * ..
223 * .. Data statements ..
224  DATA iseedy / 1988, 1989, 1990, 1991 /
225  DATA uplos / 'U', 'L' / , facts / 'F', 'N' /
226 * ..
227 * .. Executable Statements ..
228 *
229 * Initialize constants and the random number seed.
230 *
231 * Test path
232 *
233  path( 1: 1 ) = 'Complex precision'
234  path( 2: 3 ) = 'SK'
235 *
236 * Path to generate matrices
237 *
238  matpath( 1: 1 ) = 'Complex precision'
239  matpath( 2: 3 ) = 'SY'
240 *
241  nrun = 0
242  nfail = 0
243  nerrs = 0
244  DO 10 i = 1, 4
245  iseed( i ) = iseedy( i )
246  10 CONTINUE
247  lwork = max( 2*nmax, nmax*nrhs )
248 *
249 * Test the error exits
250 *
251  IF( tsterr )
252  \$ CALL cerrvx( path, nout )
253  infot = 0
254 *
255 * Set the block size and minimum block size for which the block
256 * routine should be used, which will be later returned by ILAENV.
257 *
258  nb = 1
259  nbmin = 2
260  CALL xlaenv( 1, nb )
261  CALL xlaenv( 2, nbmin )
262 *
263 * Do for each value of N in NVAL
264 *
265  DO 180 in = 1, nn
266  n = nval( in )
267  lda = max( n, 1 )
268  xtype = 'N'
269  nimat = ntypes
270  IF( n.LE.0 )
271  \$ nimat = 1
272 *
273  DO 170 imat = 1, nimat
274 *
275 * Do the tests only if DOTYPE( IMAT ) is true.
276 *
277  IF( .NOT.dotype( imat ) )
278  \$ GO TO 170
279 *
280 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
281 *
282  zerot = imat.GE.3 .AND. imat.LE.6
283  IF( zerot .AND. n.LT.imat-2 )
284  \$ GO TO 170
285 *
286 * Do first for UPLO = 'U', then for UPLO = 'L'
287 *
288  DO 160 iuplo = 1, 2
289  uplo = uplos( iuplo )
290 *
291  IF( imat.NE.ntypes ) THEN
292 *
293 * Begin generate the test matrix A.
294 *
295 * Set up parameters with CLATB4 for the matrix generator
296 * based on the type of matrix to be generated.
297 *
298  CALL clatb4( matpath, imat, n, n, TYPE, kl, ku, anorm,
299  \$ mode, cndnum, dist )
300 *
301 * Generate a matrix with CLATMS.
302 *
303  srnamt = 'CLATMS'
304  CALL clatms( n, n, dist, iseed, TYPE, rwork, mode,
305  \$ cndnum, anorm, kl, ku, uplo, a, lda,
306  \$ work, info )
307 *
308 * Check error code from CLATMS and handle error.
309 *
310  IF( info.NE.0 ) THEN
311  CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n,
312  \$ -1, -1, -1, imat, nfail, nerrs, nout )
313  GO TO 160
314  END IF
315 *
316 * For types 3-6, zero one or more rows and columns of
317 * the matrix to test that INFO is returned correctly.
318 *
319  IF( zerot ) THEN
320  IF( imat.EQ.3 ) THEN
321  izero = 1
322  ELSE IF( imat.EQ.4 ) THEN
323  izero = n
324  ELSE
325  izero = n / 2 + 1
326  END IF
327 *
328  IF( imat.LT.6 ) THEN
329 *
330 * Set row and column IZERO to zero.
331 *
332  IF( iuplo.EQ.1 ) THEN
333  ioff = ( izero-1 )*lda
334  DO 20 i = 1, izero - 1
335  a( ioff+i ) = zero
336  20 CONTINUE
337  ioff = ioff + izero
338  DO 30 i = izero, n
339  a( ioff ) = zero
340  ioff = ioff + lda
341  30 CONTINUE
342  ELSE
343  ioff = izero
344  DO 40 i = 1, izero - 1
345  a( ioff ) = zero
346  ioff = ioff + lda
347  40 CONTINUE
348  ioff = ioff - izero
349  DO 50 i = izero, n
350  a( ioff+i ) = zero
351  50 CONTINUE
352  END IF
353  ELSE
354  IF( iuplo.EQ.1 ) THEN
355 *
356 * Set the first IZERO rows and columns to zero.
357 *
358  ioff = 0
359  DO 70 j = 1, n
360  i2 = min( j, izero )
361  DO 60 i = 1, i2
362  a( ioff+i ) = zero
363  60 CONTINUE
364  ioff = ioff + lda
365  70 CONTINUE
366  ELSE
367 *
368 * Set the first IZERO rows and columns to zero.
369 *
370  ioff = 0
371  DO 90 j = 1, n
372  i1 = max( j, izero )
373  DO 80 i = i1, n
374  a( ioff+i ) = zero
375  80 CONTINUE
376  ioff = ioff + lda
377  90 CONTINUE
378  END IF
379  END IF
380  ELSE
381  izero = 0
382  END IF
383 *
384 * End generate the test matrix A.
385 *
386  ELSE
387 *
388 * IMAT = NTYPES: Use a special block diagonal matrix to
389 * test alternate code for the 2-by-2 blocks.
390 *
391  CALL clatsy( uplo, n, a, lda, iseed )
392  END IF
393 *
394  DO 150 ifact = 1, nfact
395 *
396 * Do first for FACT = 'F', then for other values.
397 *
398  fact = facts( ifact )
399 *
400 * Compute the condition number
401 *
402  IF( zerot ) THEN
403  IF( ifact.EQ.1 )
404  \$ GO TO 150
405  rcondc = zero
406 *
407  ELSE IF( ifact.EQ.1 ) THEN
408 *
409 * Compute the 1-norm of A.
410 *
411  anorm = clansy( '1', uplo, n, a, lda, rwork )
412 *
413 * Factor the matrix A.
414 *
415
416  CALL clacpy( uplo, n, n, a, lda, afac, lda )
417  CALL csytrf_rk( uplo, n, afac, lda, e, iwork, work,
418  \$ lwork, info )
419 *
420 * Compute inv(A) and take its norm.
421 *
422  CALL clacpy( uplo, n, n, afac, lda, ainv, lda )
423  lwork = (n+nb+1)*(nb+3)
424 *
425 * We need to copute the invesrse to compute
426 * RCONDC that is used later in TEST3.
427 *
428  CALL csytri_3( uplo, n, ainv, lda, e, iwork,
429  \$ work, lwork, info )
430  ainvnm = clansy( '1', uplo, n, ainv, lda, rwork )
431 *
432 * Compute the 1-norm condition number of A.
433 *
434  IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
435  rcondc = one
436  ELSE
437  rcondc = ( one / anorm ) / ainvnm
438  END IF
439  END IF
440 *
441 * Form an exact solution and set the right hand side.
442 *
443  srnamt = 'CLARHS'
444  CALL clarhs( matpath, xtype, uplo, ' ', n, n, kl, ku,
445  \$ nrhs, a, lda, xact, lda, b, lda, iseed,
446  \$ info )
447  xtype = 'C'
448 *
449 * --- Test CSYSV_RK ---
450 *
451  IF( ifact.EQ.2 ) THEN
452  CALL clacpy( uplo, n, n, a, lda, afac, lda )
453  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
454 *
455 * Factor the matrix and solve the system using
456 * CSYSV_RK.
457 *
458  srnamt = 'CSYSV_RK'
459  CALL csysv_rk( uplo, n, nrhs, afac, lda, e, iwork,
460  \$ x, lda, work, lwork, info )
461 *
462 * Adjust the expected value of INFO to account for
463 * pivoting.
464 *
465  k = izero
466  IF( k.GT.0 ) THEN
467  100 CONTINUE
468  IF( iwork( k ).LT.0 ) THEN
469  IF( iwork( k ).NE.-k ) THEN
470  k = -iwork( k )
471  GO TO 100
472  END IF
473  ELSE IF( iwork( k ).NE.k ) THEN
474  k = iwork( k )
475  GO TO 100
476  END IF
477  END IF
478 *
479 * Check error code from CSYSV_RK and handle error.
480 *
481  IF( info.NE.k ) THEN
482  CALL alaerh( path, 'CSYSV_RK', info, k, uplo,
483  \$ n, n, -1, -1, nrhs, imat, nfail,
484  \$ nerrs, nout )
485  GO TO 120
486  ELSE IF( info.NE.0 ) THEN
487  GO TO 120
488  END IF
489 *
490 *+ TEST 1 Reconstruct matrix from factors and compute
491 * residual.
492 *
493  CALL csyt01_3( uplo, n, a, lda, afac, lda, e,
494  \$ iwork, ainv, lda, rwork,
495  \$ result( 1 ) )
496 *
497 *+ TEST 2 Compute residual of the computed solution.
498 *
499  CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
500  CALL csyt02( uplo, n, nrhs, a, lda, x, lda, work,
501  \$ lda, rwork, result( 2 ) )
502 *
503 *+ TEST 3
504 * Check solution from generated exact solution.
505 *
506  CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
507  \$ result( 3 ) )
508  nt = 3
509 *
510 * Print information about the tests that did not pass
511 * the threshold.
512 *
513  DO 110 k = 1, nt
514  IF( result( k ).GE.thresh ) THEN
515  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
516  \$ CALL aladhd( nout, path )
517  WRITE( nout, fmt = 9999 )'CSYSV_RK', uplo,
518  \$ n, imat, k, result( k )
519  nfail = nfail + 1
520  END IF
521  110 CONTINUE
522  nrun = nrun + nt
523  120 CONTINUE
524  END IF
525 *
526  150 CONTINUE
527 *
528  160 CONTINUE
529  170 CONTINUE
530  180 CONTINUE
531 *
532 * Print a summary of the results.
533 *
534  CALL alasvm( path, nout, nfail, nrun, nerrs )
535 *
536  9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i2,
537  \$ ', test ', i2, ', ratio =', g12.5 )
538  RETURN
539 *
540 * End of CDRVSY_RK
541 *
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:75
subroutine csytrf_rk(UPLO, N, A, LDA, E, IPIV, WORK, LWORK, INFO)
CSYTRF_RK computes the factorization of a complex symmetric indefinite matrix using the bounded Bunch...
Definition: csytrf_rk.f:261
subroutine clatsy(UPLO, N, X, LDX, ISEED)
CLATSY
Definition: clatsy.f:91
subroutine csysv_rk(UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB, WORK, LWORK, INFO)
CSYSV_RK computes the solution to system of linear equations A * X = B for SY matrices ...
Definition: csysv_rk.f:230
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:149
subroutine cerrvx(PATH, NUNIT)
CERRVX
Definition: cerrvx.f:57
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:83
subroutine csyt02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
CSYT02
Definition: csyt02.f:129
subroutine csyt01_3(UPLO, N, A, LDA, AFAC, LDAFAC, E, IPIV, C, LDC, RWORK, RESID)
CSYT01_3
Definition: csyt01_3.f:143
subroutine csytri_3(UPLO, N, A, LDA, E, IPIV, WORK, LWORK, INFO)
CSYTRI_3
Definition: csytri_3.f:172
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:105
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:334
real function clansy(NORM, UPLO, N, A, LDA, WORK)
CLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex symmetric matrix.
Definition: clansy.f:125
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:211
subroutine cget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
CGET04
Definition: cget04.f:104
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
Definition: clatb4.f:123
Here is the call graph for this function:
Here is the caller graph for this function: