LAPACK  3.8.0 LAPACK: Linear Algebra PACKage

◆ cchktz()

 subroutine cchktz ( logical, dimension( * ) DOTYPE, integer NM, integer, dimension( * ) MVAL, integer NN, integer, dimension( * ) NVAL, real THRESH, logical TSTERR, complex, dimension( * ) A, complex, dimension( * ) COPYA, real, dimension( * ) S, complex, dimension( * ) TAU, complex, dimension( * ) WORK, real, dimension( * ) RWORK, integer NOUT )

CCHKTZ

Purpose:
` CCHKTZ tests CTZRZF.`
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NM ``` NM is INTEGER The number of values of M contained in the vector MVAL.``` [in] MVAL ``` MVAL is INTEGER array, dimension (NM) The values of the matrix row dimension M.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix column dimension N.``` [in] THRESH ``` THRESH is REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [out] A ``` A is COMPLEX array, dimension (MMAX*NMAX) where MMAX is the maximum value of M in MVAL and NMAX is the maximum value of N in NVAL.``` [out] COPYA ` COPYA is COMPLEX array, dimension (MMAX*NMAX)` [out] S ``` S is REAL array, dimension (min(MMAX,NMAX))``` [out] TAU ` TAU is COMPLEX array, dimension (MMAX)` [out] WORK ``` WORK is COMPLEX array, dimension (MMAX*NMAX + 4*NMAX + MMAX)``` [out] RWORK ` RWORK is REAL array, dimension (2*NMAX)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```
Date
December 2016

Definition at line 139 of file cchktz.f.

139 *
140 * -- LAPACK test routine (version 3.7.0) --
141 * -- LAPACK is a software package provided by Univ. of Tennessee, --
142 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
143 * December 2016
144 *
145 * .. Scalar Arguments ..
146  LOGICAL tsterr
147  INTEGER nm, nn, nout
148  REAL thresh
149 * ..
150 * .. Array Arguments ..
151  LOGICAL dotype( * )
152  INTEGER mval( * ), nval( * )
153  REAL s( * ), rwork( * )
154  COMPLEX a( * ), copya( * ), tau( * ), work( * )
155 * ..
156 *
157 * =====================================================================
158 *
159 * .. Parameters ..
160  INTEGER ntypes
161  parameter( ntypes = 3 )
162  INTEGER ntests
163  parameter( ntests = 3 )
164  REAL one, zero
165  parameter( one = 1.0e0, zero = 0.0e0 )
166 * ..
167 * .. Local Scalars ..
168  CHARACTER*3 path
169  INTEGER i, im, imode, in, info, k, lda, lwork, m,
170  \$ mnmin, mode, n, nerrs, nfail, nrun
171  REAL eps
172 * ..
173 * .. Local Arrays ..
174  INTEGER iseed( 4 ), iseedy( 4 )
175  REAL result( ntests )
176 * ..
177 * .. External Functions ..
178  REAL cqrt12, crzt01, crzt02, slamch
179  EXTERNAL cqrt12, crzt01, crzt02, slamch
180 * ..
181 * .. External Subroutines ..
182  EXTERNAL alahd, alasum, cerrtz, cgeqr2, clacpy, claset,
183  \$ clatms, ctzrzf, slaord
184 * ..
185 * .. Intrinsic Functions ..
186  INTRINSIC cmplx, max, min
187 * ..
188 * .. Scalars in Common ..
189  LOGICAL lerr, ok
190  CHARACTER*32 srnamt
191  INTEGER infot, iounit
192 * ..
193 * .. Common blocks ..
194  COMMON / infoc / infot, iounit, ok, lerr
195  COMMON / srnamc / srnamt
196 * ..
197 * .. Data statements ..
198  DATA iseedy / 1988, 1989, 1990, 1991 /
199 * ..
200 * .. Executable Statements ..
201 *
202 * Initialize constants and the random number seed.
203 *
204  path( 1: 1 ) = 'Complex precision'
205  path( 2: 3 ) = 'TZ'
206  nrun = 0
207  nfail = 0
208  nerrs = 0
209  DO 10 i = 1, 4
210  iseed( i ) = iseedy( i )
211  10 CONTINUE
212  eps = slamch( 'Epsilon' )
213 *
214 * Test the error exits
215 *
216  IF( tsterr )
217  \$ CALL cerrtz( path, nout )
218  infot = 0
219 *
220  DO 70 im = 1, nm
221 *
222 * Do for each value of M in MVAL.
223 *
224  m = mval( im )
225  lda = max( 1, m )
226 *
227  DO 60 in = 1, nn
228 *
229 * Do for each value of N in NVAL for which M .LE. N.
230 *
231  n = nval( in )
232  mnmin = min( m, n )
233  lwork = max( 1, n*n+4*m+n )
234 *
235  IF( m.LE.n ) THEN
236  DO 50 imode = 1, ntypes
237  IF( .NOT.dotype( imode ) )
238  \$ GO TO 50
239 *
240 * Do for each type of singular value distribution.
241 * 0: zero matrix
242 * 1: one small singular value
243 * 2: exponential distribution
244 *
245  mode = imode - 1
246 *
247 * Test CTZRZF
248 *
249 * Generate test matrix of size m by n using
250 * singular value distribution indicated by `mode'.
251 *
252  IF( mode.EQ.0 ) THEN
253  CALL claset( 'Full', m, n, cmplx( zero ),
254  \$ cmplx( zero ), a, lda )
255  DO 30 i = 1, mnmin
256  s( i ) = zero
257  30 CONTINUE
258  ELSE
259  CALL clatms( m, n, 'Uniform', iseed,
260  \$ 'Nonsymmetric', s, imode,
261  \$ one / eps, one, m, n, 'No packing', a,
262  \$ lda, work, info )
263  CALL cgeqr2( m, n, a, lda, work, work( mnmin+1 ),
264  \$ info )
265  CALL claset( 'Lower', m-1, n, cmplx( zero ),
266  \$ cmplx( zero ), a( 2 ), lda )
267  CALL slaord( 'Decreasing', mnmin, s, 1 )
268  END IF
269 *
270 * Save A and its singular values
271 *
272  CALL clacpy( 'All', m, n, a, lda, copya, lda )
273 *
274 * Call CTZRZF to reduce the upper trapezoidal matrix to
275 * upper triangular form.
276 *
277  srnamt = 'CTZRZF'
278  CALL ctzrzf( m, n, a, lda, tau, work, lwork, info )
279 *
280 * Compute norm(svd(a) - svd(r))
281 *
282  result( 1 ) = cqrt12( m, m, a, lda, s, work,
283  \$ lwork, rwork )
284 *
285 * Compute norm( A - R*Q )
286 *
287  result( 2 ) = crzt01( m, n, copya, a, lda, tau, work,
288  \$ lwork )
289 *
290 * Compute norm(Q'*Q - I).
291 *
292  result( 3 ) = crzt02( m, n, a, lda, tau, work, lwork )
293 *
294 * Print information about the tests that did not pass
295 * the threshold.
296 *
297  DO 40 k = 1, ntests
298  IF( result( k ).GE.thresh ) THEN
299  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
300  \$ CALL alahd( nout, path )
301  WRITE( nout, fmt = 9999 )m, n, imode, k,
302  \$ result( k )
303  nfail = nfail + 1
304  END IF
305  40 CONTINUE
306  nrun = nrun + 3
307  50 CONTINUE
308  END IF
309  60 CONTINUE
310  70 CONTINUE
311 *
312 * Print a summary of the results.
313 *
314  CALL alasum( path, nout, nfail, nrun, nerrs )
315 *
316  9999 FORMAT( ' M =', i5, ', N =', i5, ', type ', i2, ', test ', i2,
317  \$ ', ratio =', g12.5 )
318 *
319 * End if CCHKTZ
320 *
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine cerrtz(PATH, NUNIT)
CERRTZ
Definition: cerrtz.f:56
subroutine cgeqr2(M, N, A, LDA, TAU, WORK, INFO)
CGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm...
Definition: cgeqr2.f:123
real function crzt01(M, N, A, AF, LDA, TAU, WORK, LWORK)
CRZT01
Definition: crzt01.f:100
subroutine claset(UPLO, M, N, ALPHA, BETA, A, LDA)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values...
Definition: claset.f:108
real function cqrt12(M, N, A, LDA, S, WORK, LWORK, RWORK)
CQRT12
Definition: cqrt12.f:99
real function crzt02(M, N, AF, LDA, TAU, WORK, LWORK)
CRZT02
Definition: crzt02.f:93
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:69
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:105
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:334
subroutine slaord(JOB, N, X, INCX)
SLAORD
Definition: slaord.f:75
subroutine ctzrzf(M, N, A, LDA, TAU, WORK, LWORK, INFO)
CTZRZF
Definition: ctzrzf.f:153
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:75
Here is the call graph for this function:
Here is the caller graph for this function: