LAPACK  3.8.0 LAPACK: Linear Algebra PACKage

## ◆ cchksy()

 subroutine cchksy ( logical, dimension( * ) DOTYPE, integer NN, integer, dimension( * ) NVAL, integer NNB, integer, dimension( * ) NBVAL, integer NNS, integer, dimension( * ) NSVAL, real THRESH, logical TSTERR, integer NMAX, complex, dimension( * ) A, complex, dimension( * ) AFAC, complex, dimension( * ) AINV, complex, dimension( * ) B, complex, dimension( * ) X, complex, dimension( * ) XACT, complex, dimension( * ) WORK, real, dimension( * ) RWORK, integer, dimension( * ) IWORK, integer NOUT )

CCHKSY

Purpose:
` CCHKSY tests CSYTRF, -TRI2, -TRS, -TRS2, -RFS, and -CON.`
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix dimension N.``` [in] NNB ``` NNB is INTEGER The number of values of NB contained in the vector NBVAL.``` [in] NBVAL ``` NBVAL is INTEGER array, dimension (NBVAL) The values of the blocksize NB.``` [in] NNS ``` NNS is INTEGER The number of values of NRHS contained in the vector NSVAL.``` [in] NSVAL ``` NSVAL is INTEGER array, dimension (NNS) The values of the number of right hand sides NRHS.``` [in] THRESH ``` THRESH is REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for N, used in dimensioning the work arrays.``` [out] A ` A is COMPLEX array, dimension (NMAX*NMAX)` [out] AFAC ` AFAC is COMPLEX array, dimension (NMAX*NMAX)` [out] AINV ` AINV is COMPLEX array, dimension (NMAX*NMAX)` [out] B ``` B is COMPLEX array, dimension (NMAX*NSMAX) where NSMAX is the largest entry in NSVAL.``` [out] X ` X is COMPLEX array, dimension (NMAX*NSMAX)` [out] XACT ` XACT is COMPLEX array, dimension (NMAX*NSMAX)` [out] WORK ` WORK is COMPLEX array, dimension (NMAX*max(2,NSMAX))` [out] RWORK ` RWORK is REAL array, dimension (NMAX+2*NSMAX)` [out] IWORK ` IWORK is INTEGER array, dimension (NMAX)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```
Date
November 2013

Definition at line 173 of file cchksy.f.

173 *
174 * -- LAPACK test routine (version 3.5.0) --
175 * -- LAPACK is a software package provided by Univ. of Tennessee, --
176 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
177 * November 2013
178 *
179 * .. Scalar Arguments ..
180  LOGICAL tsterr
181  INTEGER nmax, nn, nnb, nns, nout
182  REAL thresh
183 * ..
184 * .. Array Arguments ..
185  LOGICAL dotype( * )
186  INTEGER iwork( * ), nbval( * ), nsval( * ), nval( * )
187  REAL rwork( * )
188  COMPLEX a( * ), afac( * ), ainv( * ), b( * ),
189  \$ work( * ), x( * ), xact( * )
190 * ..
191 *
192 * =====================================================================
193 *
194 * .. Parameters ..
195  REAL zero
196  parameter( zero = 0.0e+0 )
197  COMPLEX czero
198  parameter( czero = ( 0.0e+0, 0.0e+0 ) )
199  INTEGER ntypes
200  parameter( ntypes = 11 )
201  INTEGER ntests
202  parameter( ntests = 9 )
203 * ..
204 * .. Local Scalars ..
205  LOGICAL trfcon, zerot
206  CHARACTER dist, TYPE, uplo, xtype
207  CHARACTER*3 path
208  INTEGER i, i1, i2, imat, in, inb, info, ioff, irhs,
209  \$ iuplo, izero, j, k, kl, ku, lda, lwork, mode,
210  \$ n, nb, nerrs, nfail, nimat, nrhs, nrun, nt
211  REAL anorm, cndnum, rcond, rcondc
212 * ..
213 * .. Local Arrays ..
214  CHARACTER uplos( 2 )
215  INTEGER iseed( 4 ), iseedy( 4 )
216  REAL result( ntests )
217 * ..
218 * .. External Functions ..
219  REAL sget06, clansy
220  EXTERNAL sget06, clansy
221 * ..
222 * .. External Subroutines ..
223  EXTERNAL alaerh, alahd, alasum, cerrsy, cget04, clacpy,
226  \$ csytri2, csytrs, xlaenv
227 * ..
228 * .. Intrinsic Functions ..
229  INTRINSIC max, min
230 * ..
231 * .. Scalars in Common ..
232  LOGICAL lerr, ok
233  CHARACTER*32 srnamt
234  INTEGER infot, nunit
235 * ..
236 * .. Common blocks ..
237  COMMON / infoc / infot, nunit, ok, lerr
238  COMMON / srnamc / srnamt
239 * ..
240 * .. Data statements ..
241  DATA iseedy / 1988, 1989, 1990, 1991 /
242  DATA uplos / 'U', 'L' /
243 * ..
244 * .. Executable Statements ..
245 *
246 * Initialize constants and the random number seed.
247 *
248  path( 1: 1 ) = 'Complex precision'
249  path( 2: 3 ) = 'SY'
250  nrun = 0
251  nfail = 0
252  nerrs = 0
253  DO 10 i = 1, 4
254  iseed( i ) = iseedy( i )
255  10 CONTINUE
256 *
257 * Test the error exits
258 *
259  IF( tsterr )
260  \$ CALL cerrsy( path, nout )
261  infot = 0
262 *
263 * Set the minimum block size for which the block routine should
264 * be used, which will be later returned by ILAENV
265 *
266  CALL xlaenv( 2, 2 )
267 *
268 * Do for each value of N in NVAL
269 *
270  DO 180 in = 1, nn
271  n = nval( in )
272  lda = max( n, 1 )
273  xtype = 'N'
274  nimat = ntypes
275  IF( n.LE.0 )
276  \$ nimat = 1
277 *
278  izero = 0
279 *
280 * Do for each value of matrix type IMAT
281 *
282  DO 170 imat = 1, nimat
283 *
284 * Do the tests only if DOTYPE( IMAT ) is true.
285 *
286  IF( .NOT.dotype( imat ) )
287  \$ GO TO 170
288 *
289 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
290 *
291  zerot = imat.GE.3 .AND. imat.LE.6
292  IF( zerot .AND. n.LT.imat-2 )
293  \$ GO TO 170
294 *
295 * Do first for UPLO = 'U', then for UPLO = 'L'
296 *
297  DO 160 iuplo = 1, 2
298  uplo = uplos( iuplo )
299 *
300 * Begin generate test matrix A.
301 *
302  IF( imat.NE.ntypes ) THEN
303 *
304 * Set up parameters with CLATB4 for the matrix generator
305 * based on the type of matrix to be generated.
306 *
307  CALL clatb4( path, imat, n, n, TYPE, kl, ku, anorm,
308  \$ mode, cndnum, dist )
309 *
310 * Generate a matrix with CLATMS.
311 *
312  srnamt = 'CLATMS'
313  CALL clatms( n, n, dist, iseed, TYPE, rwork, mode,
314  \$ cndnum, anorm, kl, ku, 'N', a, lda, work,
315  \$ info )
316 *
317 * Check error code from CLATMS and handle error.
318 *
319  IF( info.NE.0 ) THEN
320  CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n,
321  \$ -1, -1, -1, imat, nfail, nerrs, nout )
322 *
323 * Skip all tests for this generated matrix
324 *
325  GO TO 160
326  END IF
327 *
328 * For matrix types 3-6, zero one or more rows and
329 * columns of the matrix to test that INFO is returned
330 * correctly.
331 *
332  IF( zerot ) THEN
333  IF( imat.EQ.3 ) THEN
334  izero = 1
335  ELSE IF( imat.EQ.4 ) THEN
336  izero = n
337  ELSE
338  izero = n / 2 + 1
339  END IF
340 *
341  IF( imat.LT.6 ) THEN
342 *
343 * Set row and column IZERO to zero.
344 *
345  IF( iuplo.EQ.1 ) THEN
346  ioff = ( izero-1 )*lda
347  DO 20 i = 1, izero - 1
348  a( ioff+i ) = czero
349  20 CONTINUE
350  ioff = ioff + izero
351  DO 30 i = izero, n
352  a( ioff ) = czero
353  ioff = ioff + lda
354  30 CONTINUE
355  ELSE
356  ioff = izero
357  DO 40 i = 1, izero - 1
358  a( ioff ) = czero
359  ioff = ioff + lda
360  40 CONTINUE
361  ioff = ioff - izero
362  DO 50 i = izero, n
363  a( ioff+i ) = czero
364  50 CONTINUE
365  END IF
366  ELSE
367  IF( iuplo.EQ.1 ) THEN
368 *
369 * Set the first IZERO rows to zero.
370 *
371  ioff = 0
372  DO 70 j = 1, n
373  i2 = min( j, izero )
374  DO 60 i = 1, i2
375  a( ioff+i ) = czero
376  60 CONTINUE
377  ioff = ioff + lda
378  70 CONTINUE
379  ELSE
380 *
381 * Set the last IZERO rows to zero.
382 *
383  ioff = 0
384  DO 90 j = 1, n
385  i1 = max( j, izero )
386  DO 80 i = i1, n
387  a( ioff+i ) = czero
388  80 CONTINUE
389  ioff = ioff + lda
390  90 CONTINUE
391  END IF
392  END IF
393  ELSE
394  izero = 0
395  END IF
396 *
397  ELSE
398 *
399 * For matrix kind IMAT = 11, generate special block
400 * diagonal matrix to test alternate code
401 * for the 2 x 2 blocks.
402 *
403  CALL clatsy( uplo, n, a, lda, iseed )
404 *
405  END IF
406 *
407 * End generate test matrix A.
408 *
409 *
410 * Do for each value of NB in NBVAL
411 *
412  DO 150 inb = 1, nnb
413 *
414 * Set the optimal blocksize, which will be later
415 * returned by ILAENV.
416 *
417  nb = nbval( inb )
418  CALL xlaenv( 1, nb )
419 *
420 * Copy the test matrix A into matrix AFAC which
421 * will be factorized in place. This is needed to
422 * preserve the test matrix A for subsequent tests.
423 *
424  CALL clacpy( uplo, n, n, a, lda, afac, lda )
425 *
426 * Compute the L*D*L**T or U*D*U**T factorization of the
427 * matrix. IWORK stores details of the interchanges and
428 * the block structure of D. AINV is a work array for
429 * block factorization, LWORK is the length of AINV.
430 *
431  lwork = max( 2, nb )*lda
432  srnamt = 'CSYTRF'
433  CALL csytrf( uplo, n, afac, lda, iwork, ainv, lwork,
434  \$ info )
435 *
436 * Adjust the expected value of INFO to account for
437 * pivoting.
438 *
439  k = izero
440  IF( k.GT.0 ) THEN
441  100 CONTINUE
442  IF( iwork( k ).LT.0 ) THEN
443  IF( iwork( k ).NE.-k ) THEN
444  k = -iwork( k )
445  GO TO 100
446  END IF
447  ELSE IF( iwork( k ).NE.k ) THEN
448  k = iwork( k )
449  GO TO 100
450  END IF
451  END IF
452 *
453 * Check error code from CSYTRF and handle error.
454 *
455  IF( info.NE.k )
456  \$ CALL alaerh( path, 'CSYTRF', info, k, uplo, n, n,
457  \$ -1, -1, nb, imat, nfail, nerrs, nout )
458 *
459 * Set the condition estimate flag if the INFO is not 0.
460 *
461  IF( info.NE.0 ) THEN
462  trfcon = .true.
463  ELSE
464  trfcon = .false.
465  END IF
466 *
467 *+ TEST 1
468 * Reconstruct matrix from factors and compute residual.
469 *
470  CALL csyt01( uplo, n, a, lda, afac, lda, iwork, ainv,
471  \$ lda, rwork, result( 1 ) )
472  nt = 1
473 *
474 *+ TEST 2
475 * Form the inverse and compute the residual,
476 * if the factorization was competed without INFO > 0
477 * (i.e. there is no zero rows and columns).
478 * Do it only for the first block size.
479 *
480  IF( inb.EQ.1 .AND. .NOT.trfcon ) THEN
481  CALL clacpy( uplo, n, n, afac, lda, ainv, lda )
482  srnamt = 'CSYTRI2'
483  lwork = (n+nb+1)*(nb+3)
484  CALL csytri2( uplo, n, ainv, lda, iwork, work,
485  \$ lwork, info )
486 *
487 * Check error code from CSYTRI2 and handle error.
488 *
489  IF( info.NE.0 )
490  \$ CALL alaerh( path, 'CSYTRI2', info, 0, uplo, n,
491  \$ n, -1, -1, -1, imat, nfail, nerrs,
492  \$ nout )
493 *
494 * Compute the residual for a symmetric matrix times
495 * its inverse.
496 *
497  CALL csyt03( uplo, n, a, lda, ainv, lda, work, lda,
498  \$ rwork, rcondc, result( 2 ) )
499  nt = 2
500  END IF
501 *
502 * Print information about the tests that did not pass
503 * the threshold.
504 *
505  DO 110 k = 1, nt
506  IF( result( k ).GE.thresh ) THEN
507  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
508  \$ CALL alahd( nout, path )
509  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
510  \$ result( k )
511  nfail = nfail + 1
512  END IF
513  110 CONTINUE
514  nrun = nrun + nt
515 *
516 * Skip the other tests if this is not the first block
517 * size.
518 *
519  IF( inb.GT.1 )
520  \$ GO TO 150
521 *
522 * Do only the condition estimate if INFO is not 0.
523 *
524  IF( trfcon ) THEN
525  rcondc = zero
526  GO TO 140
527  END IF
528 *
529 * Do for each value of NRHS in NSVAL.
530 *
531  DO 130 irhs = 1, nns
532  nrhs = nsval( irhs )
533 *
534 *+ TEST 3 (Using TRS)
535 * Solve and compute residual for A * X = B.
536 *
537 * Choose a set of NRHS random solution vectors
538 * stored in XACT and set up the right hand side B
539 *
540  srnamt = 'CLARHS'
541  CALL clarhs( path, xtype, uplo, ' ', n, n, kl, ku,
542  \$ nrhs, a, lda, xact, lda, b, lda,
543  \$ iseed, info )
544  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
545 *
546  srnamt = 'CSYTRS'
547  CALL csytrs( uplo, n, nrhs, afac, lda, iwork, x,
548  \$ lda, info )
549 *
550 * Check error code from CSYTRS and handle error.
551 *
552  IF( info.NE.0 )
553  \$ CALL alaerh( path, 'CSYTRS', info, 0, uplo, n,
554  \$ n, -1, -1, nrhs, imat, nfail,
555  \$ nerrs, nout )
556 *
557  CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
558 *
559 * Compute the residual for the solution
560 *
561  CALL csyt02( uplo, n, nrhs, a, lda, x, lda, work,
562  \$ lda, rwork, result( 3 ) )
563 *
564 *+ TEST 4 (Using TRS2)
565 * Solve and compute residual for A * X = B.
566 *
567 * Choose a set of NRHS random solution vectors
568 * stored in XACT and set up the right hand side B
569 *
570  srnamt = 'CLARHS'
571  CALL clarhs( path, xtype, uplo, ' ', n, n, kl, ku,
572  \$ nrhs, a, lda, xact, lda, b, lda,
573  \$ iseed, info )
574  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
575 *
576  srnamt = 'CSYTRS2'
577  CALL csytrs2( uplo, n, nrhs, afac, lda, iwork, x,
578  \$ lda, work, info )
579 *
580 * Check error code from CSYTRS2 and handle error.
581 *
582  IF( info.NE.0 )
583  \$ CALL alaerh( path, 'CSYTRS2', info, 0, uplo, n,
584  \$ n, -1, -1, nrhs, imat, nfail,
585  \$ nerrs, nout )
586 *
587  CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
588 *
589 * Compute the residual for the solution
590 *
591  CALL csyt02( uplo, n, nrhs, a, lda, x, lda, work,
592  \$ lda, rwork, result( 4 ) )
593 *
594 *+ TEST 5
595 * Check solution from generated exact solution.
596 *
597  CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
598  \$ result( 5 ) )
599 *
600 *+ TESTS 6, 7, and 8
601 * Use iterative refinement to improve the solution.
602 *
603  srnamt = 'CSYRFS'
604  CALL csyrfs( uplo, n, nrhs, a, lda, afac, lda,
605  \$ iwork, b, lda, x, lda, rwork,
606  \$ rwork( nrhs+1 ), work,
607  \$ rwork( 2*nrhs+1 ), info )
608 *
609 * Check error code from CSYRFS and handle error.
610 *
611  IF( info.NE.0 )
612  \$ CALL alaerh( path, 'CSYRFS', info, 0, uplo, n,
613  \$ n, -1, -1, nrhs, imat, nfail,
614  \$ nerrs, nout )
615 *
616  CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
617  \$ result( 6 ) )
618  CALL cpot05( uplo, n, nrhs, a, lda, b, lda, x, lda,
619  \$ xact, lda, rwork, rwork( nrhs+1 ),
620  \$ result( 7 ) )
621 *
622 * Print information about the tests that did not pass
623 * the threshold.
624 *
625  DO 120 k = 3, 8
626  IF( result( k ).GE.thresh ) THEN
627  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
628  \$ CALL alahd( nout, path )
629  WRITE( nout, fmt = 9998 )uplo, n, nrhs,
630  \$ imat, k, result( k )
631  nfail = nfail + 1
632  END IF
633  120 CONTINUE
634  nrun = nrun + 6
635 *
636 * End do for each value of NRHS in NSVAL.
637 *
638  130 CONTINUE
639 *
640 *+ TEST 9
641 * Get an estimate of RCOND = 1/CNDNUM.
642 *
643  140 CONTINUE
644  anorm = clansy( '1', uplo, n, a, lda, rwork )
645  srnamt = 'CSYCON'
646  CALL csycon( uplo, n, afac, lda, iwork, anorm, rcond,
647  \$ work, info )
648 *
649 * Check error code from CSYCON and handle error.
650 *
651  IF( info.NE.0 )
652  \$ CALL alaerh( path, 'CSYCON', info, 0, uplo, n, n,
653  \$ -1, -1, -1, imat, nfail, nerrs, nout )
654 *
655 * Compute the test ratio to compare values of RCOND
656 *
657  result( 9 ) = sget06( rcond, rcondc )
658 *
659 * Print information about the tests that did not pass
660 * the threshold.
661 *
662  IF( result( 9 ).GE.thresh ) THEN
663  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
664  \$ CALL alahd( nout, path )
665  WRITE( nout, fmt = 9997 )uplo, n, imat, 9,
666  \$ result( 9 )
667  nfail = nfail + 1
668  END IF
669  nrun = nrun + 1
670  150 CONTINUE
671  160 CONTINUE
672  170 CONTINUE
673  180 CONTINUE
674 *
675 * Print a summary of the results.
676 *
677  CALL alasum( path, nout, nfail, nrun, nerrs )
678 *
679  9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
680  \$ i2, ', test ', i2, ', ratio =', g12.5 )
681  9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
682  \$ i2, ', test(', i2, ') =', g12.5 )
683  9997 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ',', 10x, ' type ', i2,
684  \$ ', test(', i2, ') =', g12.5 )
685  RETURN
686 *
687 * End of CCHKSY
688 *
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine clatsy(UPLO, N, X, LDX, ISEED)
CLATSY
Definition: clatsy.f:91
subroutine cerrsy(PATH, NUNIT)
CERRSY
Definition: cerrsy.f:57
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:149
subroutine csyt03(UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK, RCOND, RESID)
CSYT03
Definition: csyt03.f:128
subroutine csytrs(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
CSYTRS
Definition: csytrs.f:122
subroutine csytrs2(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, INFO)
CSYTRS2
Definition: csytrs2.f:134
real function sget06(RCOND, RCONDC)
SGET06
Definition: sget06.f:57
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:83
subroutine csyrfs(UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
CSYRFS
Definition: csyrfs.f:194
subroutine csyt02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
CSYT02
Definition: csyt02.f:129
subroutine csytrf(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CSYTRF
Definition: csytrf.f:184
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:105
subroutine cpot05(UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
CPOT05
Definition: cpot05.f:167
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:334
real function clansy(NORM, UPLO, N, A, LDA, WORK)
CLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex symmetric matrix.
Definition: clansy.f:125
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:211
subroutine csycon(UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, INFO)
CSYCON
Definition: csycon.f:127
subroutine csyt01(UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
CSYT01
Definition: csyt01.f:127
subroutine cget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
CGET04
Definition: cget04.f:104
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:75
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
Definition: clatb4.f:123
subroutine csytri2(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CSYTRI2
Definition: csytri2.f:129
Here is the call graph for this function:
Here is the caller graph for this function: