LAPACK  3.8.0 LAPACK: Linear Algebra PACKage

## ◆ cchksy_rk()

 subroutine cchksy_rk ( logical, dimension( * ) DOTYPE, integer NN, integer, dimension( * ) NVAL, integer NNB, integer, dimension( * ) NBVAL, integer NNS, integer, dimension( * ) NSVAL, real THRESH, logical TSTERR, integer NMAX, complex, dimension( * ) A, complex, dimension( * ) AFAC, complex, dimension( * ) E, complex, dimension( * ) AINV, complex, dimension( * ) B, complex, dimension( * ) X, complex, dimension( * ) XACT, complex, dimension( * ) WORK, real, dimension( * ) RWORK, integer, dimension( * ) IWORK, integer NOUT )

CCHKSY_RK

Purpose:
``` CCHKSY_RK tests CSYTRF_RK, -TRI_3, -TRS_3,
and -CON_3.```
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix dimension N.``` [in] NNB ``` NNB is INTEGER The number of values of NB contained in the vector NBVAL.``` [in] NBVAL ``` NBVAL is INTEGER array, dimension (NBVAL) The values of the blocksize NB.``` [in] NNS ``` NNS is INTEGER The number of values of NRHS contained in the vector NSVAL.``` [in] NSVAL ``` NSVAL is INTEGER array, dimension (NNS) The values of the number of right hand sides NRHS.``` [in] THRESH ``` THRESH is REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for N, used in dimensioning the work arrays.``` [out] A ` A is COMPLEX array, dimension (NMAX*NMAX)` [out] AFAC ` AFAC is COMPLEX array, dimension (NMAX*NMAX)` [out] E ` E is COMPLEX array, dimension (NMAX)` [out] AINV ` AINV is COMPLEX array, dimension (NMAX*NMAX)` [out] B ``` B is COMPLEX array, dimension (NMAX*NSMAX) where NSMAX is the largest entry in NSVAL.``` [out] X ` X is COMPLEX array, dimension (NMAX*NSMAX)` [out] XACT ` XACT is COMPLEX array, dimension (NMAX*NSMAX)` [out] WORK ` WORK is COMPLEX array, dimension (NMAX*max(3,NSMAX))` [out] RWORK ` RWORK is REAL array, dimension (max(NMAX,2*NSMAX))` [out] IWORK ` IWORK is INTEGER array, dimension (2*NMAX)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```
Date
December 2016

Definition at line 179 of file cchksy_rk.f.

179 *
180 * -- LAPACK test routine (version 3.7.0) --
181 * -- LAPACK is a software package provided by Univ. of Tennessee, --
182 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
183 * December 2016
184 *
185 * .. Scalar Arguments ..
186  LOGICAL tsterr
187  INTEGER nmax, nn, nnb, nns, nout
188  REAL thresh
189 * ..
190 * .. Array Arguments ..
191  LOGICAL dotype( * )
192  INTEGER iwork( * ), nbval( * ), nsval( * ), nval( * )
193  REAL rwork( * )
194  COMPLEX a( * ), afac( * ), ainv( * ), b( * ), e( * ),
195  \$ work( * ), x( * ), xact( * )
196 * ..
197 *
198 * =====================================================================
199 *
200 * .. Parameters ..
201  REAL zero, one
202  parameter( zero = 0.0e+0, one = 1.0e+0 )
203  REAL onehalf
204  parameter( onehalf = 0.5e+0 )
205  REAL eight, sevten
206  parameter( eight = 8.0e+0, sevten = 17.0e+0 )
207  COMPLEX czero
208  parameter( czero = ( 0.0e+0, 0.0e+0 ) )
209  INTEGER ntypes
210  parameter( ntypes = 11 )
211  INTEGER ntests
212  parameter( ntests = 7 )
213 * ..
214 * .. Local Scalars ..
215  LOGICAL trfcon, zerot
216  CHARACTER dist, TYPE, uplo, xtype
217  CHARACTER*3 path, matpath
218  INTEGER i, i1, i2, imat, in, inb, info, ioff, irhs,
219  \$ itemp, itemp2, iuplo, izero, j, k, kl, ku, lda,
220  \$ lwork, mode, n, nb, nerrs, nfail, nimat, nrhs,
221  \$ nrun, nt
222  REAL alpha, anorm, cndnum, const, sing_max,
223  \$ sing_min, rcond, rcondc, stemp
224 * ..
225 * .. Local Arrays ..
226  CHARACTER uplos( 2 )
227  INTEGER iseed( 4 ), iseedy( 4 )
228  REAL result( ntests )
229  COMPLEX block( 2, 2 ), cdummy( 1 )
230 * ..
231 * .. External Functions ..
232  REAL clange, clansy, sget06
233  EXTERNAL clange, clansy, sget06
234 * ..
235 * .. External Subroutines ..
236  EXTERNAL alaerh, alahd, alasum, cerrsy, cgesvd, cget04,
240 * ..
241 * .. Intrinsic Functions ..
242  INTRINSIC max, min, sqrt
243 * ..
244 * .. Scalars in Common ..
245  LOGICAL lerr, ok
246  CHARACTER*32 srnamt
247  INTEGER infot, nunit
248 * ..
249 * .. Common blocks ..
250  COMMON / infoc / infot, nunit, ok, lerr
251  COMMON / srnamc / srnamt
252 * ..
253 * .. Data statements ..
254  DATA iseedy / 1988, 1989, 1990, 1991 /
255  DATA uplos / 'U', 'L' /
256 * ..
257 * .. Executable Statements ..
258 *
259 * Initialize constants and the random number seed.
260 *
261  alpha = ( one+sqrt( sevten ) ) / eight
262 *
263 * Test path
264 *
265  path( 1: 1 ) = 'Complex precision'
266  path( 2: 3 ) = 'SK'
267 *
268 * Path to generate matrices
269 *
270  matpath( 1: 1 ) = 'Complex precision'
271  matpath( 2: 3 ) = 'SY'
272 *
273  nrun = 0
274  nfail = 0
275  nerrs = 0
276  DO 10 i = 1, 4
277  iseed( i ) = iseedy( i )
278  10 CONTINUE
279 *
280 * Test the error exits
281 *
282  IF( tsterr )
283  \$ CALL cerrsy( path, nout )
284  infot = 0
285 *
286 * Set the minimum block size for which the block routine should
287 * be used, which will be later returned by ILAENV
288 *
289  CALL xlaenv( 2, 2 )
290 *
291 * Do for each value of N in NVAL
292 *
293  DO 270 in = 1, nn
294  n = nval( in )
295  lda = max( n, 1 )
296  xtype = 'N'
297  nimat = ntypes
298  IF( n.LE.0 )
299  \$ nimat = 1
300 *
301  izero = 0
302 *
303 * Do for each value of matrix type IMAT
304 *
305  DO 260 imat = 1, nimat
306 *
307 * Do the tests only if DOTYPE( IMAT ) is true.
308 *
309  IF( .NOT.dotype( imat ) )
310  \$ GO TO 260
311 *
312 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
313 *
314  zerot = imat.GE.3 .AND. imat.LE.6
315  IF( zerot .AND. n.LT.imat-2 )
316  \$ GO TO 260
317 *
318 * Do first for UPLO = 'U', then for UPLO = 'L'
319 *
320  DO 250 iuplo = 1, 2
321  uplo = uplos( iuplo )
322 *
323 * Begin generate test matrix A.
324 *
325  IF( imat.NE.ntypes ) THEN
326 *
327 * Set up parameters with CLATB4 for the matrix generator
328 * based on the type of matrix to be generated.
329 *
330  CALL clatb4( matpath, imat, n, n, TYPE, kl, ku, anorm,
331  \$ mode, cndnum, dist )
332 *
333 * Generate a matrix with CLATMS.
334 *
335  srnamt = 'CLATMS'
336  CALL clatms( n, n, dist, iseed, TYPE, rwork, mode,
337  \$ cndnum, anorm, kl, ku, uplo, a, lda,
338  \$ work, info )
339 *
340 * Check error code from CLATMS and handle error.
341 *
342  IF( info.NE.0 ) THEN
343  CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n,
344  \$ -1, -1, -1, imat, nfail, nerrs, nout )
345 *
346 * Skip all tests for this generated matrix
347 *
348  GO TO 250
349  END IF
350 *
351 * For matrix types 3-6, zero one or more rows and
352 * columns of the matrix to test that INFO is returned
353 * correctly.
354 *
355  IF( zerot ) THEN
356  IF( imat.EQ.3 ) THEN
357  izero = 1
358  ELSE IF( imat.EQ.4 ) THEN
359  izero = n
360  ELSE
361  izero = n / 2 + 1
362  END IF
363 *
364  IF( imat.LT.6 ) THEN
365 *
366 * Set row and column IZERO to zero.
367 *
368  IF( iuplo.EQ.1 ) THEN
369  ioff = ( izero-1 )*lda
370  DO 20 i = 1, izero - 1
371  a( ioff+i ) = czero
372  20 CONTINUE
373  ioff = ioff + izero
374  DO 30 i = izero, n
375  a( ioff ) = czero
376  ioff = ioff + lda
377  30 CONTINUE
378  ELSE
379  ioff = izero
380  DO 40 i = 1, izero - 1
381  a( ioff ) = czero
382  ioff = ioff + lda
383  40 CONTINUE
384  ioff = ioff - izero
385  DO 50 i = izero, n
386  a( ioff+i ) = czero
387  50 CONTINUE
388  END IF
389  ELSE
390  IF( iuplo.EQ.1 ) THEN
391 *
392 * Set the first IZERO rows and columns to zero.
393 *
394  ioff = 0
395  DO 70 j = 1, n
396  i2 = min( j, izero )
397  DO 60 i = 1, i2
398  a( ioff+i ) = czero
399  60 CONTINUE
400  ioff = ioff + lda
401  70 CONTINUE
402  ELSE
403 *
404 * Set the last IZERO rows and columns to zero.
405 *
406  ioff = 0
407  DO 90 j = 1, n
408  i1 = max( j, izero )
409  DO 80 i = i1, n
410  a( ioff+i ) = czero
411  80 CONTINUE
412  ioff = ioff + lda
413  90 CONTINUE
414  END IF
415  END IF
416  ELSE
417  izero = 0
418  END IF
419 *
420  ELSE
421 *
422 * For matrix kind IMAT = 11, generate special block
423 * diagonal matrix to test alternate code
424 * for the 2 x 2 blocks.
425 *
426  CALL clatsy( uplo, n, a, lda, iseed )
427 *
428  END IF
429 *
430 * End generate test matrix A.
431 *
432 *
433 * Do for each value of NB in NBVAL
434 *
435  DO 240 inb = 1, nnb
436 *
437 * Set the optimal blocksize, which will be later
438 * returned by ILAENV.
439 *
440  nb = nbval( inb )
441  CALL xlaenv( 1, nb )
442 *
443 * Copy the test matrix A into matrix AFAC which
444 * will be factorized in place. This is needed to
445 * preserve the test matrix A for subsequent tests.
446 *
447  CALL clacpy( uplo, n, n, a, lda, afac, lda )
448 *
449 * Compute the L*D*L**T or U*D*U**T factorization of the
450 * matrix. IWORK stores details of the interchanges and
451 * the block structure of D. AINV is a work array for
452 * block factorization, LWORK is the length of AINV.
453 *
454  lwork = max( 2, nb )*lda
455  srnamt = 'CSYTRF_RK'
456  CALL csytrf_rk( uplo, n, afac, lda, e, iwork, ainv,
457  \$ lwork, info )
458 *
459 * Adjust the expected value of INFO to account for
460 * pivoting.
461 *
462  k = izero
463  IF( k.GT.0 ) THEN
464  100 CONTINUE
465  IF( iwork( k ).LT.0 ) THEN
466  IF( iwork( k ).NE.-k ) THEN
467  k = -iwork( k )
468  GO TO 100
469  END IF
470  ELSE IF( iwork( k ).NE.k ) THEN
471  k = iwork( k )
472  GO TO 100
473  END IF
474  END IF
475 *
476 * Check error code from CSYTRF_RK and handle error.
477 *
478  IF( info.NE.k)
479  \$ CALL alaerh( path, 'CSYTRF_RK', info, k,
480  \$ uplo, n, n, -1, -1, nb, imat,
481  \$ nfail, nerrs, nout )
482 *
483 * Set the condition estimate flag if the INFO is not 0.
484 *
485  IF( info.NE.0 ) THEN
486  trfcon = .true.
487  ELSE
488  trfcon = .false.
489  END IF
490 *
491 *+ TEST 1
492 * Reconstruct matrix from factors and compute residual.
493 *
494  CALL csyt01_3( uplo, n, a, lda, afac, lda, e, iwork,
495  \$ ainv, lda, rwork, result( 1 ) )
496  nt = 1
497 *
498 *+ TEST 2
499 * Form the inverse and compute the residual,
500 * if the factorization was competed without INFO > 0
501 * (i.e. there is no zero rows and columns).
502 * Do it only for the first block size.
503 *
504  IF( inb.EQ.1 .AND. .NOT.trfcon ) THEN
505  CALL clacpy( uplo, n, n, afac, lda, ainv, lda )
506  srnamt = 'CSYTRI_3'
507 *
508 * Another reason that we need to compute the invesrse
509 * is that CSYT03 produces RCONDC which is used later
510 * in TEST6 and TEST7.
511 *
512  lwork = (n+nb+1)*(nb+3)
513  CALL csytri_3( uplo, n, ainv, lda, e, iwork, work,
514  \$ lwork, info )
515 *
516 * Check error code from CSYTRI_3 and handle error.
517 *
518  IF( info.NE.0 )
519  \$ CALL alaerh( path, 'CSYTRI_3', info, -1,
520  \$ uplo, n, n, -1, -1, -1, imat,
521  \$ nfail, nerrs, nout )
522 *
523 * Compute the residual for a symmetric matrix times
524 * its inverse.
525 *
526  CALL csyt03( uplo, n, a, lda, ainv, lda, work, lda,
527  \$ rwork, rcondc, result( 2 ) )
528  nt = 2
529  END IF
530 *
531 * Print information about the tests that did not pass
532 * the threshold.
533 *
534  DO 110 k = 1, nt
535  IF( result( k ).GE.thresh ) THEN
536  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
537  \$ CALL alahd( nout, path )
538  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
539  \$ result( k )
540  nfail = nfail + 1
541  END IF
542  110 CONTINUE
543  nrun = nrun + nt
544 *
545 *+ TEST 3
546 * Compute largest element in U or L
547 *
548  result( 3 ) = zero
549  stemp = zero
550 *
551  const = ( ( alpha**2-one ) / ( alpha**2-onehalf ) ) /
552  \$ ( one-alpha )
553 *
554  IF( iuplo.EQ.1 ) THEN
555 *
556 * Compute largest element in U
557 *
558  k = n
559  120 CONTINUE
560  IF( k.LE.1 )
561  \$ GO TO 130
562 *
563  IF( iwork( k ).GT.zero ) THEN
564 *
565 * Get max absolute value from elements
566 * in column k in in U
567 *
568  stemp = clange( 'M', k-1, 1,
569  \$ afac( ( k-1 )*lda+1 ), lda, rwork )
570  ELSE
571 *
572 * Get max absolute value from elements
573 * in columns k and k-1 in U
574 *
575  stemp = clange( 'M', k-2, 2,
576  \$ afac( ( k-2 )*lda+1 ), lda, rwork )
577  k = k - 1
578 *
579  END IF
580 *
581 * STEMP should be bounded by CONST
582 *
583  stemp = stemp - const + thresh
584  IF( stemp.GT.result( 3 ) )
585  \$ result( 3 ) = stemp
586 *
587  k = k - 1
588 *
589  GO TO 120
590  130 CONTINUE
591 *
592  ELSE
593 *
594 * Compute largest element in L
595 *
596  k = 1
597  140 CONTINUE
598  IF( k.GE.n )
599  \$ GO TO 150
600 *
601  IF( iwork( k ).GT.zero ) THEN
602 *
603 * Get max absolute value from elements
604 * in column k in in L
605 *
606  stemp = clange( 'M', n-k, 1,
607  \$ afac( ( k-1 )*lda+k+1 ), lda, rwork )
608  ELSE
609 *
610 * Get max absolute value from elements
611 * in columns k and k+1 in L
612 *
613  stemp = clange( 'M', n-k-1, 2,
614  \$ afac( ( k-1 )*lda+k+2 ), lda, rwork )
615  k = k + 1
616 *
617  END IF
618 *
619 * STEMP should be bounded by CONST
620 *
621  stemp = stemp - const + thresh
622  IF( stemp.GT.result( 3 ) )
623  \$ result( 3 ) = stemp
624 *
625  k = k + 1
626 *
627  GO TO 140
628  150 CONTINUE
629  END IF
630 *
631 *
632 *+ TEST 4
633 * Compute largest 2-Norm (condition number)
634 * of 2-by-2 diag blocks
635 *
636  result( 4 ) = zero
637  stemp = zero
638 *
639  const = ( ( alpha**2-one ) / ( alpha**2-onehalf ) )*
640  \$ ( ( one + alpha ) / ( one - alpha ) )
641 *
642  IF( iuplo.EQ.1 ) THEN
643 *
644 * Loop backward for UPLO = 'U'
645 *
646  k = n
647  160 CONTINUE
648  IF( k.LE.1 )
649  \$ GO TO 170
650 *
651  IF( iwork( k ).LT.zero ) THEN
652 *
653 * Get the two singular values
654 * (real and non-negative) of a 2-by-2 block,
655 * store them in RWORK array
656 *
657  block( 1, 1 ) = afac( ( k-2 )*lda+k-1 )
658  block( 1, 2 ) = e( k )
659  block( 2, 1 ) = block( 1, 2 )
660  block( 2, 2 ) = afac( (k-1)*lda+k )
661 *
662  CALL cgesvd( 'N', 'N', 2, 2, block, 2, rwork,
663  \$ cdummy, 1, cdummy, 1,
664  \$ work, 6, rwork( 3 ), info )
665 *
666 *
667  sing_max = rwork( 1 )
668  sing_min = rwork( 2 )
669 *
670  stemp = sing_max / sing_min
671 *
672 * STEMP should be bounded by CONST
673 *
674  stemp = stemp - const + thresh
675  IF( stemp.GT.result( 4 ) )
676  \$ result( 4 ) = stemp
677  k = k - 1
678 *
679  END IF
680 *
681  k = k - 1
682 *
683  GO TO 160
684  170 CONTINUE
685 *
686  ELSE
687 *
688 * Loop forward for UPLO = 'L'
689 *
690  k = 1
691  180 CONTINUE
692  IF( k.GE.n )
693  \$ GO TO 190
694 *
695  IF( iwork( k ).LT.zero ) THEN
696 *
697 * Get the two singular values
698 * (real and non-negative) of a 2-by-2 block,
699 * store them in RWORK array
700 *
701  block( 1, 1 ) = afac( ( k-1 )*lda+k )
702  block( 2, 1 ) = e( k )
703  block( 1, 2 ) = block( 2, 1 )
704  block( 2, 2 ) = afac( k*lda+k+1 )
705 *
706  CALL cgesvd( 'N', 'N', 2, 2, block, 2, rwork,
707  \$ cdummy, 1, cdummy, 1,
708  \$ work, 6, rwork(3), info )
709 *
710  sing_max = rwork( 1 )
711  sing_min = rwork( 2 )
712 *
713  stemp = sing_max / sing_min
714 *
715 * STEMP should be bounded by CONST
716 *
717  stemp = stemp - const + thresh
718  IF( stemp.GT.result( 4 ) )
719  \$ result( 4 ) = stemp
720  k = k + 1
721 *
722  END IF
723 *
724  k = k + 1
725 *
726  GO TO 180
727  190 CONTINUE
728  END IF
729 *
730 * Print information about the tests that did not pass
731 * the threshold.
732 *
733  DO 200 k = 3, 4
734  IF( result( k ).GE.thresh ) THEN
735  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
736  \$ CALL alahd( nout, path )
737  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
738  \$ result( k )
739  nfail = nfail + 1
740  END IF
741  200 CONTINUE
742  nrun = nrun + 2
743 *
744 * Skip the other tests if this is not the first block
745 * size.
746 *
747  IF( inb.GT.1 )
748  \$ GO TO 240
749 *
750 * Do only the condition estimate if INFO is not 0.
751 *
752  IF( trfcon ) THEN
753  rcondc = zero
754  GO TO 230
755  END IF
756 *
757 * Do for each value of NRHS in NSVAL.
758 *
759  DO 220 irhs = 1, nns
760  nrhs = nsval( irhs )
761 *
762 *+ TEST 5 ( Using TRS_3)
763 * Solve and compute residual for A * X = B.
764 *
765 * Choose a set of NRHS random solution vectors
766 * stored in XACT and set up the right hand side B
767 *
768  srnamt = 'CLARHS'
769  CALL clarhs( matpath, xtype, uplo, ' ', n, n,
770  \$ kl, ku, nrhs, a, lda, xact, lda,
771  \$ b, lda, iseed, info )
772  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
773 *
774  srnamt = 'CSYTRS_3'
775  CALL csytrs_3( uplo, n, nrhs, afac, lda, e, iwork,
776  \$ x, lda, info )
777 *
778 * Check error code from CSYTRS_3 and handle error.
779 *
780  IF( info.NE.0 )
781  \$ CALL alaerh( path, 'CSYTRS_3', info, 0,
782  \$ uplo, n, n, -1, -1, nrhs, imat,
783  \$ nfail, nerrs, nout )
784 *
785  CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
786 *
787 * Compute the residual for the solution
788 *
789  CALL csyt02( uplo, n, nrhs, a, lda, x, lda, work,
790  \$ lda, rwork, result( 5 ) )
791 *
792 *+ TEST 6
793 * Check solution from generated exact solution.
794 *
795  CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
796  \$ result( 6 ) )
797 *
798 * Print information about the tests that did not pass
799 * the threshold.
800 *
801  DO 210 k = 5, 6
802  IF( result( k ).GE.thresh ) THEN
803  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
804  \$ CALL alahd( nout, path )
805  WRITE( nout, fmt = 9998 )uplo, n, nrhs,
806  \$ imat, k, result( k )
807  nfail = nfail + 1
808  END IF
809  210 CONTINUE
810  nrun = nrun + 2
811 *
812 * End do for each value of NRHS in NSVAL.
813 *
814  220 CONTINUE
815 *
816 *+ TEST 7
817 * Get an estimate of RCOND = 1/CNDNUM.
818 *
819  230 CONTINUE
820  anorm = clansy( '1', uplo, n, a, lda, rwork )
821  srnamt = 'CSYCON_3'
822  CALL csycon_3( uplo, n, afac, lda, e, iwork, anorm,
823  \$ rcond, work, info )
824 *
825 * Check error code from CSYCON_3 and handle error.
826 *
827  IF( info.NE.0 )
828  \$ CALL alaerh( path, 'CSYCON_3', info, 0,
829  \$ uplo, n, n, -1, -1, -1, imat,
830  \$ nfail, nerrs, nout )
831 *
832 * Compute the test ratio to compare values of RCOND
833 *
834  result( 7 ) = sget06( rcond, rcondc )
835 *
836 * Print information about the tests that did not pass
837 * the threshold.
838 *
839  IF( result( 7 ).GE.thresh ) THEN
840  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
841  \$ CALL alahd( nout, path )
842  WRITE( nout, fmt = 9997 )uplo, n, imat, 7,
843  \$ result( 7 )
844  nfail = nfail + 1
845  END IF
846  nrun = nrun + 1
847  240 CONTINUE
848 *
849  250 CONTINUE
850  260 CONTINUE
851  270 CONTINUE
852 *
853 * Print a summary of the results.
854 *
855  CALL alasum( path, nout, nfail, nrun, nerrs )
856 *
857  9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
858  \$ i2, ', test ', i2, ', ratio =', g12.5 )
859  9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
860  \$ i2, ', test(', i2, ') =', g12.5 )
861  9997 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ',', 10x, ' type ', i2,
862  \$ ', test(', i2, ') =', g12.5 )
863  RETURN
864 *
865 * End of CCHKSY_RK
866 *
subroutine csycon_3(UPLO, N, A, LDA, E, IPIV, ANORM, RCOND, WORK, INFO)
CSYCON_3
Definition: csycon_3.f:173
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine csytrf_rk(UPLO, N, A, LDA, E, IPIV, WORK, LWORK, INFO)
CSYTRF_RK computes the factorization of a complex symmetric indefinite matrix using the bounded Bunch...
Definition: csytrf_rk.f:261
subroutine clatsy(UPLO, N, X, LDX, ISEED)
CLATSY
Definition: clatsy.f:91
subroutine cerrsy(PATH, NUNIT)
CERRSY
Definition: cerrsy.f:57
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:149
subroutine csyt03(UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK, RCOND, RESID)
CSYT03
Definition: csyt03.f:128
real function sget06(RCOND, RCONDC)
SGET06
Definition: sget06.f:57
real function clange(NORM, M, N, A, LDA, WORK)
CLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: clange.f:117
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:83
subroutine csytrs_3(UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB, INFO)
CSYTRS_3
Definition: csytrs_3.f:167
subroutine csyt02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
CSYT02
Definition: csyt02.f:129
subroutine csyt01_3(UPLO, N, A, LDA, AFAC, LDAFAC, E, IPIV, C, LDC, RWORK, RESID)
CSYT01_3
Definition: csyt01_3.f:143
subroutine csytri_3(UPLO, N, A, LDA, E, IPIV, WORK, LWORK, INFO)
CSYTRI_3
Definition: csytri_3.f:172
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:105
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:334
subroutine cgesvd(JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK, LWORK, RWORK, INFO)
CGESVD computes the singular value decomposition (SVD) for GE matrices
Definition: cgesvd.f:216
real function clansy(NORM, UPLO, N, A, LDA, WORK)
CLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex symmetric matrix.
Definition: clansy.f:125
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:211
subroutine cget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
CGET04
Definition: cget04.f:104
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:75
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
Definition: clatb4.f:123
Here is the call graph for this function:
Here is the caller graph for this function: