LAPACK  3.8.0 LAPACK: Linear Algebra PACKage

## ◆ cchksy_rook()

 subroutine cchksy_rook ( logical, dimension( * ) DOTYPE, integer NN, integer, dimension( * ) NVAL, integer NNB, integer, dimension( * ) NBVAL, integer NNS, integer, dimension( * ) NSVAL, real THRESH, logical TSTERR, integer NMAX, complex, dimension( * ) A, complex, dimension( * ) AFAC, complex, dimension( * ) AINV, complex, dimension( * ) B, complex, dimension( * ) X, complex, dimension( * ) XACT, complex, dimension( * ) WORK, real, dimension( * ) RWORK, integer, dimension( * ) IWORK, integer NOUT )

CCHKSY_ROOK

Purpose:
``` CCHKSY_ROOK tests CSYTRF_ROOK, -TRI_ROOK, -TRS_ROOK,
and -CON_ROOK.```
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix dimension N.``` [in] NNB ``` NNB is INTEGER The number of values of NB contained in the vector NBVAL.``` [in] NBVAL ``` NBVAL is INTEGER array, dimension (NBVAL) The values of the blocksize NB.``` [in] NNS ``` NNS is INTEGER The number of values of NRHS contained in the vector NSVAL.``` [in] NSVAL ``` NSVAL is INTEGER array, dimension (NNS) The values of the number of right hand sides NRHS.``` [in] THRESH ``` THRESH is REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for N, used in dimensioning the work arrays.``` [out] A ` A is COMPLEX array, dimension (NMAX*NMAX)` [out] AFAC ` AFAC is COMPLEX array, dimension (NMAX*NMAX)` [out] AINV ` AINV is COMPLEX array, dimension (NMAX*NMAX)` [out] B ``` B is COMPLEX array, dimension (NMAX*NSMAX) where NSMAX is the largest entry in NSVAL.``` [out] X ` X is COMPLEX array, dimension (NMAX*NSMAX)` [out] XACT ` XACT is COMPLEX array, dimension (NMAX*NSMAX)` [out] WORK ` WORK is COMPLEX array, dimension (NMAX*max(3,NSMAX))` [out] RWORK ` RWORK is REAL array, dimension (max(NMAX,2*NSMAX))` [out] IWORK ` IWORK is INTEGER array, dimension (2*NMAX)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```
Date
December 2016

Definition at line 174 of file cchksy_rook.f.

174 *
175 * -- LAPACK test routine (version 3.7.0) --
176 * -- LAPACK is a software package provided by Univ. of Tennessee, --
177 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
178 * December 2016
179 *
180 * .. Scalar Arguments ..
181  LOGICAL tsterr
182  INTEGER nmax, nn, nnb, nns, nout
183  REAL thresh
184 * ..
185 * .. Array Arguments ..
186  LOGICAL dotype( * )
187  INTEGER iwork( * ), nbval( * ), nsval( * ), nval( * )
188  REAL rwork( * )
189  COMPLEX a( * ), afac( * ), ainv( * ), b( * ),
190  \$ work( * ), x( * ), xact( * )
191 * ..
192 *
193 * =====================================================================
194 *
195 * .. Parameters ..
196  REAL zero, one
197  parameter( zero = 0.0e+0, one = 1.0e+0 )
198  REAL onehalf
199  parameter( onehalf = 0.5e+0 )
200  REAL eight, sevten
201  parameter( eight = 8.0e+0, sevten = 17.0e+0 )
202  COMPLEX czero
203  parameter( czero = ( 0.0e+0, 0.0e+0 ) )
204  INTEGER ntypes
205  parameter( ntypes = 11 )
206  INTEGER ntests
207  parameter( ntests = 7 )
208 * ..
209 * .. Local Scalars ..
210  LOGICAL trfcon, zerot
211  CHARACTER dist, TYPE, uplo, xtype
212  CHARACTER*3 path, matpath
213  INTEGER i, i1, i2, imat, in, inb, info, ioff, irhs,
214  \$ iuplo, izero, j, k, kl, ku, lda, lwork, mode,
215  \$ n, nb, nerrs, nfail, nimat, nrhs, nrun, nt
216  REAL alpha, anorm, cndnum, const, sing_max,
217  \$ sing_min, rcond, rcondc, stemp
218 * ..
219 * .. Local Arrays ..
220  CHARACTER uplos( 2 )
221  INTEGER iseed( 4 ), iseedy( 4 )
222  REAL result( ntests )
223  COMPLEX block( 2, 2 ), cdummy( 1 )
224 * ..
225 * .. External Functions ..
226  REAL clange, clansy, sget06
227  EXTERNAL clange, clansy, sget06
228 * ..
229 * .. External Subroutines ..
230  EXTERNAL alaerh, alahd, alasum, cerrsy, cgesvd, cget04,
234 * ..
235 * .. Intrinsic Functions ..
236  INTRINSIC max, min, sqrt
237 * ..
238 * .. Scalars in Common ..
239  LOGICAL lerr, ok
240  CHARACTER*32 srnamt
241  INTEGER infot, nunit
242 * ..
243 * .. Common blocks ..
244  COMMON / infoc / infot, nunit, ok, lerr
245  COMMON / srnamc / srnamt
246 * ..
247 * .. Data statements ..
248  DATA iseedy / 1988, 1989, 1990, 1991 /
249  DATA uplos / 'U', 'L' /
250 * ..
251 * .. Executable Statements ..
252 *
253 * Initialize constants and the random number seed.
254 *
255  alpha = ( one+sqrt( sevten ) ) / eight
256 *
257 * Test path
258 *
259  path( 1: 1 ) = 'Complex precision'
260  path( 2: 3 ) = 'SR'
261 *
262 * Path to generate matrices
263 *
264  matpath( 1: 1 ) = 'Complex precision'
265  matpath( 2: 3 ) = 'SY'
266 *
267  nrun = 0
268  nfail = 0
269  nerrs = 0
270  DO 10 i = 1, 4
271  iseed( i ) = iseedy( i )
272  10 CONTINUE
273 *
274 * Test the error exits
275 *
276  IF( tsterr )
277  \$ CALL cerrsy( path, nout )
278  infot = 0
279 *
280 * Set the minimum block size for which the block routine should
281 * be used, which will be later returned by ILAENV
282 *
283  CALL xlaenv( 2, 2 )
284 *
285 * Do for each value of N in NVAL
286 *
287  DO 270 in = 1, nn
288  n = nval( in )
289  lda = max( n, 1 )
290  xtype = 'N'
291  nimat = ntypes
292  IF( n.LE.0 )
293  \$ nimat = 1
294 *
295  izero = 0
296 *
297 * Do for each value of matrix type IMAT
298 *
299  DO 260 imat = 1, nimat
300 *
301 * Do the tests only if DOTYPE( IMAT ) is true.
302 *
303  IF( .NOT.dotype( imat ) )
304  \$ GO TO 260
305 *
306 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
307 *
308  zerot = imat.GE.3 .AND. imat.LE.6
309  IF( zerot .AND. n.LT.imat-2 )
310  \$ GO TO 260
311 *
312 * Do first for UPLO = 'U', then for UPLO = 'L'
313 *
314  DO 250 iuplo = 1, 2
315  uplo = uplos( iuplo )
316 *
317 * Begin generate test matrix A.
318 *
319  IF( imat.NE.ntypes ) THEN
320 *
321 * Set up parameters with CLATB4 for the matrix generator
322 * based on the type of matrix to be generated.
323 *
324  CALL clatb4( matpath, imat, n, n, TYPE, kl, ku, anorm,
325  \$ mode, cndnum, dist )
326 *
327 * Generate a matrix with CLATMS.
328 *
329  srnamt = 'CLATMS'
330  CALL clatms( n, n, dist, iseed, TYPE, rwork, mode,
331  \$ cndnum, anorm, kl, ku, uplo, a, lda,
332  \$ work, info )
333 *
334 * Check error code from CLATMS and handle error.
335 *
336  IF( info.NE.0 ) THEN
337  CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n,
338  \$ -1, -1, -1, imat, nfail, nerrs, nout )
339 *
340 * Skip all tests for this generated matrix
341 *
342  GO TO 250
343  END IF
344 *
345 * For matrix types 3-6, zero one or more rows and
346 * columns of the matrix to test that INFO is returned
347 * correctly.
348 *
349  IF( zerot ) THEN
350  IF( imat.EQ.3 ) THEN
351  izero = 1
352  ELSE IF( imat.EQ.4 ) THEN
353  izero = n
354  ELSE
355  izero = n / 2 + 1
356  END IF
357 *
358  IF( imat.LT.6 ) THEN
359 *
360 * Set row and column IZERO to zero.
361 *
362  IF( iuplo.EQ.1 ) THEN
363  ioff = ( izero-1 )*lda
364  DO 20 i = 1, izero - 1
365  a( ioff+i ) = czero
366  20 CONTINUE
367  ioff = ioff + izero
368  DO 30 i = izero, n
369  a( ioff ) = czero
370  ioff = ioff + lda
371  30 CONTINUE
372  ELSE
373  ioff = izero
374  DO 40 i = 1, izero - 1
375  a( ioff ) = czero
376  ioff = ioff + lda
377  40 CONTINUE
378  ioff = ioff - izero
379  DO 50 i = izero, n
380  a( ioff+i ) = czero
381  50 CONTINUE
382  END IF
383  ELSE
384  IF( iuplo.EQ.1 ) THEN
385 *
386 * Set the first IZERO rows and columns to zero.
387 *
388  ioff = 0
389  DO 70 j = 1, n
390  i2 = min( j, izero )
391  DO 60 i = 1, i2
392  a( ioff+i ) = czero
393  60 CONTINUE
394  ioff = ioff + lda
395  70 CONTINUE
396  ELSE
397 *
398 * Set the last IZERO rows and columns to zero.
399 *
400  ioff = 0
401  DO 90 j = 1, n
402  i1 = max( j, izero )
403  DO 80 i = i1, n
404  a( ioff+i ) = czero
405  80 CONTINUE
406  ioff = ioff + lda
407  90 CONTINUE
408  END IF
409  END IF
410  ELSE
411  izero = 0
412  END IF
413 *
414  ELSE
415 *
416 * For matrix kind IMAT = 11, generate special block
417 * diagonal matrix to test alternate code
418 * for the 2 x 2 blocks.
419 *
420  CALL clatsy( uplo, n, a, lda, iseed )
421 *
422  END IF
423 *
424 * End generate test matrix A.
425 *
426 *
427 * Do for each value of NB in NBVAL
428 *
429  DO 240 inb = 1, nnb
430 *
431 * Set the optimal blocksize, which will be later
432 * returned by ILAENV.
433 *
434  nb = nbval( inb )
435  CALL xlaenv( 1, nb )
436 *
437 * Copy the test matrix A into matrix AFAC which
438 * will be factorized in place. This is needed to
439 * preserve the test matrix A for subsequent tests.
440 *
441  CALL clacpy( uplo, n, n, a, lda, afac, lda )
442 *
443 * Compute the L*D*L**T or U*D*U**T factorization of the
444 * matrix. IWORK stores details of the interchanges and
445 * the block structure of D. AINV is a work array for
446 * block factorization, LWORK is the length of AINV.
447 *
448  lwork = max( 2, nb )*lda
449  srnamt = 'CSYTRF_ROOK'
450  CALL csytrf_rook( uplo, n, afac, lda, iwork, ainv,
451  \$ lwork, info )
452 *
453 * Adjust the expected value of INFO to account for
454 * pivoting.
455 *
456  k = izero
457  IF( k.GT.0 ) THEN
458  100 CONTINUE
459  IF( iwork( k ).LT.0 ) THEN
460  IF( iwork( k ).NE.-k ) THEN
461  k = -iwork( k )
462  GO TO 100
463  END IF
464  ELSE IF( iwork( k ).NE.k ) THEN
465  k = iwork( k )
466  GO TO 100
467  END IF
468  END IF
469 *
470 * Check error code from CSYTRF_ROOK and handle error.
471 *
472  IF( info.NE.k)
473  \$ CALL alaerh( path, 'CSYTRF_ROOK', info, k,
474  \$ uplo, n, n, -1, -1, nb, imat,
475  \$ nfail, nerrs, nout )
476 *
477 * Set the condition estimate flag if the INFO is not 0.
478 *
479  IF( info.NE.0 ) THEN
480  trfcon = .true.
481  ELSE
482  trfcon = .false.
483  END IF
484 *
485 *+ TEST 1
486 * Reconstruct matrix from factors and compute residual.
487 *
488  CALL csyt01_rook( uplo, n, a, lda, afac, lda, iwork,
489  \$ ainv, lda, rwork, result( 1 ) )
490  nt = 1
491 *
492 *+ TEST 2
493 * Form the inverse and compute the residual,
494 * if the factorization was competed without INFO > 0
495 * (i.e. there is no zero rows and columns).
496 * Do it only for the first block size.
497 *
498  IF( inb.EQ.1 .AND. .NOT.trfcon ) THEN
499  CALL clacpy( uplo, n, n, afac, lda, ainv, lda )
500  srnamt = 'CSYTRI_ROOK'
501  CALL csytri_rook( uplo, n, ainv, lda, iwork, work,
502  \$ info )
503 *
504 * Check error code from CSYTRI_ROOK and handle error.
505 *
506  IF( info.NE.0 )
507  \$ CALL alaerh( path, 'CSYTRI_ROOK', info, -1,
508  \$ uplo, n, n, -1, -1, -1, imat,
509  \$ nfail, nerrs, nout )
510 *
511 * Compute the residual for a symmetric matrix times
512 * its inverse.
513 *
514  CALL csyt03( uplo, n, a, lda, ainv, lda, work, lda,
515  \$ rwork, rcondc, result( 2 ) )
516  nt = 2
517  END IF
518 *
519 * Print information about the tests that did not pass
520 * the threshold.
521 *
522  DO 110 k = 1, nt
523  IF( result( k ).GE.thresh ) THEN
524  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
525  \$ CALL alahd( nout, path )
526  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
527  \$ result( k )
528  nfail = nfail + 1
529  END IF
530  110 CONTINUE
531  nrun = nrun + nt
532 *
533 *+ TEST 3
534 * Compute largest element in U or L
535 *
536  result( 3 ) = zero
537  stemp = zero
538 *
539  const = ( ( alpha**2-one ) / ( alpha**2-onehalf ) ) /
540  \$ ( one-alpha )
541 *
542  IF( iuplo.EQ.1 ) THEN
543 *
544 * Compute largest element in U
545 *
546  k = n
547  120 CONTINUE
548  IF( k.LE.1 )
549  \$ GO TO 130
550 *
551  IF( iwork( k ).GT.zero ) THEN
552 *
553 * Get max absolute value from elements
554 * in column k in in U
555 *
556  stemp = clange( 'M', k-1, 1,
557  \$ afac( ( k-1 )*lda+1 ), lda, rwork )
558  ELSE
559 *
560 * Get max absolute value from elements
561 * in columns k and k-1 in U
562 *
563  stemp = clange( 'M', k-2, 2,
564  \$ afac( ( k-2 )*lda+1 ), lda, rwork )
565  k = k - 1
566 *
567  END IF
568 *
569 * STEMP should be bounded by CONST
570 *
571  stemp = stemp - const + thresh
572  IF( stemp.GT.result( 3 ) )
573  \$ result( 3 ) = stemp
574 *
575  k = k - 1
576 *
577  GO TO 120
578  130 CONTINUE
579 *
580  ELSE
581 *
582 * Compute largest element in L
583 *
584  k = 1
585  140 CONTINUE
586  IF( k.GE.n )
587  \$ GO TO 150
588 *
589  IF( iwork( k ).GT.zero ) THEN
590 *
591 * Get max absolute value from elements
592 * in column k in in L
593 *
594  stemp = clange( 'M', n-k, 1,
595  \$ afac( ( k-1 )*lda+k+1 ), lda, rwork )
596  ELSE
597 *
598 * Get max absolute value from elements
599 * in columns k and k+1 in L
600 *
601  stemp = clange( 'M', n-k-1, 2,
602  \$ afac( ( k-1 )*lda+k+2 ), lda, rwork )
603  k = k + 1
604 *
605  END IF
606 *
607 * STEMP should be bounded by CONST
608 *
609  stemp = stemp - const + thresh
610  IF( stemp.GT.result( 3 ) )
611  \$ result( 3 ) = stemp
612 *
613  k = k + 1
614 *
615  GO TO 140
616  150 CONTINUE
617  END IF
618 *
619 *
620 *+ TEST 4
621 * Compute largest 2-Norm (condition number)
622 * of 2-by-2 diag blocks
623 *
624  result( 4 ) = zero
625  stemp = zero
626 *
627  const = ( ( alpha**2-one ) / ( alpha**2-onehalf ) )*
628  \$ ( ( one + alpha ) / ( one - alpha ) )
629 *
630  IF( iuplo.EQ.1 ) THEN
631 *
632 * Loop backward for UPLO = 'U'
633 *
634  k = n
635  160 CONTINUE
636  IF( k.LE.1 )
637  \$ GO TO 170
638 *
639  IF( iwork( k ).LT.zero ) THEN
640 *
641 * Get the two singular values
642 * (real and non-negative) of a 2-by-2 block,
643 * store them in RWORK array
644 *
645  block( 1, 1 ) = afac( ( k-2 )*lda+k-1 )
646  block( 1, 2 ) = afac( (k-1)*lda+k-1 )
647  block( 2, 1 ) = block( 1, 2 )
648  block( 2, 2 ) = afac( (k-1)*lda+k )
649 *
650  CALL cgesvd( 'N', 'N', 2, 2, block, 2, rwork,
651  \$ cdummy, 1, cdummy, 1,
652  \$ work, 6, rwork( 3 ), info )
653 *
654 *
655  sing_max = rwork( 1 )
656  sing_min = rwork( 2 )
657 *
658  stemp = sing_max / sing_min
659 *
660 * STEMP should be bounded by CONST
661 *
662  stemp = stemp - const + thresh
663  IF( stemp.GT.result( 4 ) )
664  \$ result( 4 ) = stemp
665  k = k - 1
666 *
667  END IF
668 *
669  k = k - 1
670 *
671  GO TO 160
672  170 CONTINUE
673 *
674  ELSE
675 *
676 * Loop forward for UPLO = 'L'
677 *
678  k = 1
679  180 CONTINUE
680  IF( k.GE.n )
681  \$ GO TO 190
682 *
683  IF( iwork( k ).LT.zero ) THEN
684 *
685 * Get the two singular values
686 * (real and non-negative) of a 2-by-2 block,
687 * store them in RWORK array
688 *
689  block( 1, 1 ) = afac( ( k-1 )*lda+k )
690  block( 2, 1 ) = afac( ( k-1 )*lda+k+1 )
691  block( 1, 2 ) = block( 2, 1 )
692  block( 2, 2 ) = afac( k*lda+k+1 )
693 *
694  CALL cgesvd( 'N', 'N', 2, 2, block, 2, rwork,
695  \$ cdummy, 1, cdummy, 1,
696  \$ work, 6, rwork(3), info )
697 *
698  sing_max = rwork( 1 )
699  sing_min = rwork( 2 )
700 *
701  stemp = sing_max / sing_min
702 *
703 * STEMP should be bounded by CONST
704 *
705  stemp = stemp - const + thresh
706  IF( stemp.GT.result( 4 ) )
707  \$ result( 4 ) = stemp
708  k = k + 1
709 *
710  END IF
711 *
712  k = k + 1
713 *
714  GO TO 180
715  190 CONTINUE
716  END IF
717 *
718 * Print information about the tests that did not pass
719 * the threshold.
720 *
721  DO 200 k = 3, 4
722  IF( result( k ).GE.thresh ) THEN
723  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
724  \$ CALL alahd( nout, path )
725  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
726  \$ result( k )
727  nfail = nfail + 1
728  END IF
729  200 CONTINUE
730  nrun = nrun + 2
731 *
732 * Skip the other tests if this is not the first block
733 * size.
734 *
735  IF( inb.GT.1 )
736  \$ GO TO 240
737 *
738 * Do only the condition estimate if INFO is not 0.
739 *
740  IF( trfcon ) THEN
741  rcondc = zero
742  GO TO 230
743  END IF
744 *
745 * Do for each value of NRHS in NSVAL.
746 *
747  DO 220 irhs = 1, nns
748  nrhs = nsval( irhs )
749 *
750 *+ TEST 5 ( Using TRS_ROOK)
751 * Solve and compute residual for A * X = B.
752 *
753 * Choose a set of NRHS random solution vectors
754 * stored in XACT and set up the right hand side B
755 *
756  srnamt = 'CLARHS'
757  CALL clarhs( matpath, xtype, uplo, ' ', n, n,
758  \$ kl, ku, nrhs, a, lda, xact, lda,
759  \$ b, lda, iseed, info )
760  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
761 *
762  srnamt = 'CSYTRS_ROOK'
763  CALL csytrs_rook( uplo, n, nrhs, afac, lda, iwork,
764  \$ x, lda, info )
765 *
766 * Check error code from CSYTRS_ROOK and handle error.
767 *
768  IF( info.NE.0 )
769  \$ CALL alaerh( path, 'CSYTRS_ROOK', info, 0,
770  \$ uplo, n, n, -1, -1, nrhs, imat,
771  \$ nfail, nerrs, nout )
772 *
773  CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
774 *
775 * Compute the residual for the solution
776 *
777  CALL csyt02( uplo, n, nrhs, a, lda, x, lda, work,
778  \$ lda, rwork, result( 5 ) )
779 *
780 *+ TEST 6
781 * Check solution from generated exact solution.
782 *
783  CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
784  \$ result( 6 ) )
785 *
786 * Print information about the tests that did not pass
787 * the threshold.
788 *
789  DO 210 k = 5, 6
790  IF( result( k ).GE.thresh ) THEN
791  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
792  \$ CALL alahd( nout, path )
793  WRITE( nout, fmt = 9998 )uplo, n, nrhs,
794  \$ imat, k, result( k )
795  nfail = nfail + 1
796  END IF
797  210 CONTINUE
798  nrun = nrun + 2
799 *
800 * End do for each value of NRHS in NSVAL.
801 *
802  220 CONTINUE
803 *
804 *+ TEST 7
805 * Get an estimate of RCOND = 1/CNDNUM.
806 *
807  230 CONTINUE
808  anorm = clansy( '1', uplo, n, a, lda, rwork )
809  srnamt = 'CSYCON_ROOK'
810  CALL csycon_rook( uplo, n, afac, lda, iwork, anorm,
811  \$ rcond, work, info )
812 *
813 * Check error code from CSYCON_ROOK and handle error.
814 *
815  IF( info.NE.0 )
816  \$ CALL alaerh( path, 'CSYCON_ROOK', info, 0,
817  \$ uplo, n, n, -1, -1, -1, imat,
818  \$ nfail, nerrs, nout )
819 *
820 * Compute the test ratio to compare values of RCOND
821 *
822  result( 7 ) = sget06( rcond, rcondc )
823 *
824 * Print information about the tests that did not pass
825 * the threshold.
826 *
827  IF( result( 7 ).GE.thresh ) THEN
828  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
829  \$ CALL alahd( nout, path )
830  WRITE( nout, fmt = 9997 )uplo, n, imat, 7,
831  \$ result( 7 )
832  nfail = nfail + 1
833  END IF
834  nrun = nrun + 1
835  240 CONTINUE
836 *
837  250 CONTINUE
838  260 CONTINUE
839  270 CONTINUE
840 *
841 * Print a summary of the results.
842 *
843  CALL alasum( path, nout, nfail, nrun, nerrs )
844 *
845  9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
846  \$ i2, ', test ', i2, ', ratio =', g12.5 )
847  9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
848  \$ i2, ', test(', i2, ') =', g12.5 )
849  9997 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ',', 10x, ' type ', i2,
850  \$ ', test(', i2, ') =', g12.5 )
851  RETURN
852 *
853 * End of CCHKSY_ROOK
854 *
subroutine csytri_rook(UPLO, N, A, LDA, IPIV, WORK, INFO)
CSYTRI_ROOK
Definition: csytri_rook.f:131
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine clatsy(UPLO, N, X, LDX, ISEED)
CLATSY
Definition: clatsy.f:91
subroutine cerrsy(PATH, NUNIT)
CERRSY
Definition: cerrsy.f:57
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:149
subroutine csytrs_rook(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
CSYTRS_ROOK
Definition: csytrs_rook.f:138
subroutine csyt03(UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK, RCOND, RESID)
CSYT03
Definition: csyt03.f:128
real function sget06(RCOND, RCONDC)
SGET06
Definition: sget06.f:57
real function clange(NORM, M, N, A, LDA, WORK)
CLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: clange.f:117
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:83
subroutine csyt02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
CSYT02
Definition: csyt02.f:129
subroutine csyt01_rook(UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
CSYT01_ROOK
Definition: csyt01_rook.f:127
subroutine csytrf_rook(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CSYTRF_ROOK
Definition: csytrf_rook.f:210
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:105
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:334
subroutine cgesvd(JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK, LWORK, RWORK, INFO)
CGESVD computes the singular value decomposition (SVD) for GE matrices
Definition: cgesvd.f:216
real function clansy(NORM, UPLO, N, A, LDA, WORK)
CLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex symmetric matrix.
Definition: clansy.f:125
subroutine csycon_rook(UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, INFO)
CSYCON_ROOK
Definition: csycon_rook.f:141
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:211
subroutine cget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
CGET04
Definition: cget04.f:104
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:75
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
Definition: clatb4.f:123
Here is the call graph for this function:
Here is the caller graph for this function: