LAPACK  3.10.1
LAPACK: Linear Algebra PACKage

◆ zla_gerpvgrw()

double precision function zla_gerpvgrw ( integer  N,
integer  NCOLS,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldaf, * )  AF,
integer  LDAF 
)

ZLA_GERPVGRW multiplies a square real matrix by a complex matrix.

Download ZLA_GERPVGRW + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 ZLA_GERPVGRW computes the reciprocal pivot growth factor
 norm(A)/norm(U). The "max absolute element" norm is used. If this is
 much less than 1, the stability of the LU factorization of the
 (equilibrated) matrix A could be poor. This also means that the
 solution X, estimated condition numbers, and error bounds could be
 unreliable.
Parameters
[in]N
          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.
[in]NCOLS
          NCOLS is INTEGER
     The number of columns of the matrix A. NCOLS >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
     On entry, the N-by-N matrix A.
[in]LDA
          LDA is INTEGER
     The leading dimension of the array A.  LDA >= max(1,N).
[in]AF
          AF is COMPLEX*16 array, dimension (LDAF,N)
     The factors L and U from the factorization
     A = P*L*U as computed by ZGETRF.
[in]LDAF
          LDAF is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 98 of file zla_gerpvgrw.f.

100 *
101 * -- LAPACK computational routine --
102 * -- LAPACK is a software package provided by Univ. of Tennessee, --
103 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
104 *
105 * .. Scalar Arguments ..
106  INTEGER N, NCOLS, LDA, LDAF
107 * ..
108 * .. Array Arguments ..
109  COMPLEX*16 A( LDA, * ), AF( LDAF, * )
110 * ..
111 *
112 * =====================================================================
113 *
114 * .. Local Scalars ..
115  INTEGER I, J
116  DOUBLE PRECISION AMAX, UMAX, RPVGRW
117  COMPLEX*16 ZDUM
118 * ..
119 * .. Intrinsic Functions ..
120  INTRINSIC max, min, abs, real, dimag
121 * ..
122 * .. Statement Functions ..
123  DOUBLE PRECISION CABS1
124 * ..
125 * .. Statement Function Definitions ..
126  cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
127 * ..
128 * .. Executable Statements ..
129 *
130  rpvgrw = 1.0d+0
131 
132  DO j = 1, ncols
133  amax = 0.0d+0
134  umax = 0.0d+0
135  DO i = 1, n
136  amax = max( cabs1( a( i, j ) ), amax )
137  END DO
138  DO i = 1, j
139  umax = max( cabs1( af( i, j ) ), umax )
140  END DO
141  IF ( umax /= 0.0d+0 ) THEN
142  rpvgrw = min( amax / umax, rpvgrw )
143  END IF
144  END DO
145  zla_gerpvgrw = rpvgrw
146 *
147 * End of ZLA_GERPVGRW
148 *
double precision function zla_gerpvgrw(N, NCOLS, A, LDA, AF, LDAF)
ZLA_GERPVGRW multiplies a square real matrix by a complex matrix.
Definition: zla_gerpvgrw.f:100
Here is the caller graph for this function: