LAPACK  3.10.1
LAPACK: Linear Algebra PACKage
cdrvpox.f
Go to the documentation of this file.
1 *> \brief \b CDRVPOX
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE CDRVPO( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
12 * A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
13 * RWORK, NOUT )
14 *
15 * .. Scalar Arguments ..
16 * LOGICAL TSTERR
17 * INTEGER NMAX, NN, NOUT, NRHS
18 * REAL THRESH
19 * ..
20 * .. Array Arguments ..
21 * LOGICAL DOTYPE( * )
22 * INTEGER NVAL( * )
23 * REAL RWORK( * ), S( * )
24 * COMPLEX A( * ), AFAC( * ), ASAV( * ), B( * ),
25 * $ BSAV( * ), WORK( * ), X( * ), XACT( * )
26 * ..
27 *
28 *
29 *> \par Purpose:
30 * =============
31 *>
32 *> \verbatim
33 *>
34 *> CDRVPO tests the driver routines CPOSV, -SVX, and -SVXX.
35 *>
36 *> Note that this file is used only when the XBLAS are available,
37 *> otherwise cdrvpo.f defines this subroutine.
38 *> \endverbatim
39 *
40 * Arguments:
41 * ==========
42 *
43 *> \param[in] DOTYPE
44 *> \verbatim
45 *> DOTYPE is LOGICAL array, dimension (NTYPES)
46 *> The matrix types to be used for testing. Matrices of type j
47 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
48 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
49 *> \endverbatim
50 *>
51 *> \param[in] NN
52 *> \verbatim
53 *> NN is INTEGER
54 *> The number of values of N contained in the vector NVAL.
55 *> \endverbatim
56 *>
57 *> \param[in] NVAL
58 *> \verbatim
59 *> NVAL is INTEGER array, dimension (NN)
60 *> The values of the matrix dimension N.
61 *> \endverbatim
62 *>
63 *> \param[in] NRHS
64 *> \verbatim
65 *> NRHS is INTEGER
66 *> The number of right hand side vectors to be generated for
67 *> each linear system.
68 *> \endverbatim
69 *>
70 *> \param[in] THRESH
71 *> \verbatim
72 *> THRESH is REAL
73 *> The threshold value for the test ratios. A result is
74 *> included in the output file if RESULT >= THRESH. To have
75 *> every test ratio printed, use THRESH = 0.
76 *> \endverbatim
77 *>
78 *> \param[in] TSTERR
79 *> \verbatim
80 *> TSTERR is LOGICAL
81 *> Flag that indicates whether error exits are to be tested.
82 *> \endverbatim
83 *>
84 *> \param[in] NMAX
85 *> \verbatim
86 *> NMAX is INTEGER
87 *> The maximum value permitted for N, used in dimensioning the
88 *> work arrays.
89 *> \endverbatim
90 *>
91 *> \param[out] A
92 *> \verbatim
93 *> A is COMPLEX array, dimension (NMAX*NMAX)
94 *> \endverbatim
95 *>
96 *> \param[out] AFAC
97 *> \verbatim
98 *> AFAC is COMPLEX array, dimension (NMAX*NMAX)
99 *> \endverbatim
100 *>
101 *> \param[out] ASAV
102 *> \verbatim
103 *> ASAV is COMPLEX array, dimension (NMAX*NMAX)
104 *> \endverbatim
105 *>
106 *> \param[out] B
107 *> \verbatim
108 *> B is COMPLEX array, dimension (NMAX*NRHS)
109 *> \endverbatim
110 *>
111 *> \param[out] BSAV
112 *> \verbatim
113 *> BSAV is COMPLEX array, dimension (NMAX*NRHS)
114 *> \endverbatim
115 *>
116 *> \param[out] X
117 *> \verbatim
118 *> X is COMPLEX array, dimension (NMAX*NRHS)
119 *> \endverbatim
120 *>
121 *> \param[out] XACT
122 *> \verbatim
123 *> XACT is COMPLEX array, dimension (NMAX*NRHS)
124 *> \endverbatim
125 *>
126 *> \param[out] S
127 *> \verbatim
128 *> S is REAL array, dimension (NMAX)
129 *> \endverbatim
130 *>
131 *> \param[out] WORK
132 *> \verbatim
133 *> WORK is COMPLEX array, dimension
134 *> (NMAX*max(3,NRHS))
135 *> \endverbatim
136 *>
137 *> \param[out] RWORK
138 *> \verbatim
139 *> RWORK is REAL array, dimension (NMAX+2*NRHS)
140 *> \endverbatim
141 *>
142 *> \param[in] NOUT
143 *> \verbatim
144 *> NOUT is INTEGER
145 *> The unit number for output.
146 *> \endverbatim
147 *
148 * Authors:
149 * ========
150 *
151 *> \author Univ. of Tennessee
152 *> \author Univ. of California Berkeley
153 *> \author Univ. of Colorado Denver
154 *> \author NAG Ltd.
155 *
156 *> \ingroup complex_lin
157 *
158 * =====================================================================
159  SUBROUTINE cdrvpo( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
160  $ A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
161  $ RWORK, NOUT )
162 *
163 * -- LAPACK test routine --
164 * -- LAPACK is a software package provided by Univ. of Tennessee, --
165 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
166 *
167 * .. Scalar Arguments ..
168  LOGICAL TSTERR
169  INTEGER NMAX, NN, NOUT, NRHS
170  REAL THRESH
171 * ..
172 * .. Array Arguments ..
173  LOGICAL DOTYPE( * )
174  INTEGER NVAL( * )
175  REAL RWORK( * ), S( * )
176  COMPLEX A( * ), AFAC( * ), ASAV( * ), B( * ),
177  $ bsav( * ), work( * ), x( * ), xact( * )
178 * ..
179 *
180 * =====================================================================
181 *
182 * .. Parameters ..
183  REAL ONE, ZERO
184  PARAMETER ( ONE = 1.0e+0, zero = 0.0e+0 )
185  INTEGER NTYPES
186  parameter( ntypes = 9 )
187  INTEGER NTESTS
188  parameter( ntests = 6 )
189 * ..
190 * .. Local Scalars ..
191  LOGICAL EQUIL, NOFACT, PREFAC, ZEROT
192  CHARACTER DIST, EQUED, FACT, TYPE, UPLO, XTYPE
193  CHARACTER*3 PATH
194  INTEGER I, IEQUED, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
195  $ izero, k, k1, kl, ku, lda, mode, n, nb, nbmin,
196  $ nerrs, nfact, nfail, nimat, nrun, nt,
197  $ n_err_bnds
198  REAL AINVNM, AMAX, ANORM, CNDNUM, RCOND, RCONDC,
199  $ ROLDC, SCOND, RPVGRW_SVXX
200 * ..
201 * .. Local Arrays ..
202  CHARACTER EQUEDS( 2 ), FACTS( 3 ), UPLOS( 2 )
203  INTEGER ISEED( 4 ), ISEEDY( 4 )
204  REAL RESULT( NTESTS ), BERR( NRHS ),
205  $ errbnds_n( nrhs, 3 ), errbnds_c( nrhs, 3 )
206 * ..
207 * .. External Functions ..
208  LOGICAL LSAME
209  REAL CLANHE, SGET06
210  EXTERNAL lsame, clanhe, sget06
211 * ..
212 * .. External Subroutines ..
213  EXTERNAL aladhd, alaerh, alasvm, cerrvx, cget04, clacpy,
217 * ..
218 * .. Scalars in Common ..
219  LOGICAL LERR, OK
220  CHARACTER*32 SRNAMT
221  INTEGER INFOT, NUNIT
222 * ..
223 * .. Common blocks ..
224  COMMON / infoc / infot, nunit, ok, lerr
225  COMMON / srnamc / srnamt
226 * ..
227 * .. Intrinsic Functions ..
228  INTRINSIC cmplx, max
229 * ..
230 * .. Data statements ..
231  DATA iseedy / 1988, 1989, 1990, 1991 /
232  DATA uplos / 'U', 'L' /
233  DATA facts / 'F', 'N', 'E' /
234  DATA equeds / 'N', 'Y' /
235 * ..
236 * .. Executable Statements ..
237 *
238 * Initialize constants and the random number seed.
239 *
240  path( 1: 1 ) = 'Complex precision'
241  path( 2: 3 ) = 'PO'
242  nrun = 0
243  nfail = 0
244  nerrs = 0
245  DO 10 i = 1, 4
246  iseed( i ) = iseedy( i )
247  10 CONTINUE
248 *
249 * Test the error exits
250 *
251  IF( tsterr )
252  $ CALL cerrvx( path, nout )
253  infot = 0
254 *
255 * Set the block size and minimum block size for testing.
256 *
257  nb = 1
258  nbmin = 2
259  CALL xlaenv( 1, nb )
260  CALL xlaenv( 2, nbmin )
261 *
262 * Do for each value of N in NVAL
263 *
264  DO 130 in = 1, nn
265  n = nval( in )
266  lda = max( n, 1 )
267  xtype = 'N'
268  nimat = ntypes
269  IF( n.LE.0 )
270  $ nimat = 1
271 *
272  DO 120 imat = 1, nimat
273 *
274 * Do the tests only if DOTYPE( IMAT ) is true.
275 *
276  IF( .NOT.dotype( imat ) )
277  $ GO TO 120
278 *
279 * Skip types 3, 4, or 5 if the matrix size is too small.
280 *
281  zerot = imat.GE.3 .AND. imat.LE.5
282  IF( zerot .AND. n.LT.imat-2 )
283  $ GO TO 120
284 *
285 * Do first for UPLO = 'U', then for UPLO = 'L'
286 *
287  DO 110 iuplo = 1, 2
288  uplo = uplos( iuplo )
289 *
290 * Set up parameters with CLATB4 and generate a test matrix
291 * with CLATMS.
292 *
293  CALL clatb4( path, imat, n, n, TYPE, KL, KU, ANORM, MODE,
294  $ CNDNUM, DIST )
295 *
296  srnamt = 'CLATMS'
297  CALL clatms( n, n, dist, iseed, TYPE, RWORK, MODE,
298  $ cndnum, anorm, kl, ku, uplo, a, lda, work,
299  $ info )
300 *
301 * Check error code from CLATMS.
302 *
303  IF( info.NE.0 ) THEN
304  CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n, -1,
305  $ -1, -1, imat, nfail, nerrs, nout )
306  GO TO 110
307  END IF
308 *
309 * For types 3-5, zero one row and column of the matrix to
310 * test that INFO is returned correctly.
311 *
312  IF( zerot ) THEN
313  IF( imat.EQ.3 ) THEN
314  izero = 1
315  ELSE IF( imat.EQ.4 ) THEN
316  izero = n
317  ELSE
318  izero = n / 2 + 1
319  END IF
320  ioff = ( izero-1 )*lda
321 *
322 * Set row and column IZERO of A to 0.
323 *
324  IF( iuplo.EQ.1 ) THEN
325  DO 20 i = 1, izero - 1
326  a( ioff+i ) = zero
327  20 CONTINUE
328  ioff = ioff + izero
329  DO 30 i = izero, n
330  a( ioff ) = zero
331  ioff = ioff + lda
332  30 CONTINUE
333  ELSE
334  ioff = izero
335  DO 40 i = 1, izero - 1
336  a( ioff ) = zero
337  ioff = ioff + lda
338  40 CONTINUE
339  ioff = ioff - izero
340  DO 50 i = izero, n
341  a( ioff+i ) = zero
342  50 CONTINUE
343  END IF
344  ELSE
345  izero = 0
346  END IF
347 *
348 * Set the imaginary part of the diagonals.
349 *
350  CALL claipd( n, a, lda+1, 0 )
351 *
352 * Save a copy of the matrix A in ASAV.
353 *
354  CALL clacpy( uplo, n, n, a, lda, asav, lda )
355 *
356  DO 100 iequed = 1, 2
357  equed = equeds( iequed )
358  IF( iequed.EQ.1 ) THEN
359  nfact = 3
360  ELSE
361  nfact = 1
362  END IF
363 *
364  DO 90 ifact = 1, nfact
365  fact = facts( ifact )
366  prefac = lsame( fact, 'F' )
367  nofact = lsame( fact, 'N' )
368  equil = lsame( fact, 'E' )
369 *
370  IF( zerot ) THEN
371  IF( prefac )
372  $ GO TO 90
373  rcondc = zero
374 *
375  ELSE IF( .NOT.lsame( fact, 'N' ) ) THEN
376 *
377 * Compute the condition number for comparison with
378 * the value returned by CPOSVX (FACT = 'N' reuses
379 * the condition number from the previous iteration
380 * with FACT = 'F').
381 *
382  CALL clacpy( uplo, n, n, asav, lda, afac, lda )
383  IF( equil .OR. iequed.GT.1 ) THEN
384 *
385 * Compute row and column scale factors to
386 * equilibrate the matrix A.
387 *
388  CALL cpoequ( n, afac, lda, s, scond, amax,
389  $ info )
390  IF( info.EQ.0 .AND. n.GT.0 ) THEN
391  IF( iequed.GT.1 )
392  $ scond = zero
393 *
394 * Equilibrate the matrix.
395 *
396  CALL claqhe( uplo, n, afac, lda, s, scond,
397  $ amax, equed )
398  END IF
399  END IF
400 *
401 * Save the condition number of the
402 * non-equilibrated system for use in CGET04.
403 *
404  IF( equil )
405  $ roldc = rcondc
406 *
407 * Compute the 1-norm of A.
408 *
409  anorm = clanhe( '1', uplo, n, afac, lda, rwork )
410 *
411 * Factor the matrix A.
412 *
413  CALL cpotrf( uplo, n, afac, lda, info )
414 *
415 * Form the inverse of A.
416 *
417  CALL clacpy( uplo, n, n, afac, lda, a, lda )
418  CALL cpotri( uplo, n, a, lda, info )
419 *
420 * Compute the 1-norm condition number of A.
421 *
422  ainvnm = clanhe( '1', uplo, n, a, lda, rwork )
423  IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
424  rcondc = one
425  ELSE
426  rcondc = ( one / anorm ) / ainvnm
427  END IF
428  END IF
429 *
430 * Restore the matrix A.
431 *
432  CALL clacpy( uplo, n, n, asav, lda, a, lda )
433 *
434 * Form an exact solution and set the right hand side.
435 *
436  srnamt = 'CLARHS'
437  CALL clarhs( path, xtype, uplo, ' ', n, n, kl, ku,
438  $ nrhs, a, lda, xact, lda, b, lda,
439  $ iseed, info )
440  xtype = 'C'
441  CALL clacpy( 'Full', n, nrhs, b, lda, bsav, lda )
442 *
443  IF( nofact ) THEN
444 *
445 * --- Test CPOSV ---
446 *
447 * Compute the L*L' or U'*U factorization of the
448 * matrix and solve the system.
449 *
450  CALL clacpy( uplo, n, n, a, lda, afac, lda )
451  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
452 *
453  srnamt = 'CPOSV '
454  CALL cposv( uplo, n, nrhs, afac, lda, x, lda,
455  $ info )
456 *
457 * Check error code from CPOSV .
458 *
459  IF( info.NE.izero ) THEN
460  CALL alaerh( path, 'CPOSV ', info, izero,
461  $ uplo, n, n, -1, -1, nrhs, imat,
462  $ nfail, nerrs, nout )
463  GO TO 70
464  ELSE IF( info.NE.0 ) THEN
465  GO TO 70
466  END IF
467 *
468 * Reconstruct matrix from factors and compute
469 * residual.
470 *
471  CALL cpot01( uplo, n, a, lda, afac, lda, rwork,
472  $ result( 1 ) )
473 *
474 * Compute residual of the computed solution.
475 *
476  CALL clacpy( 'Full', n, nrhs, b, lda, work,
477  $ lda )
478  CALL cpot02( uplo, n, nrhs, a, lda, x, lda,
479  $ work, lda, rwork, result( 2 ) )
480 *
481 * Check solution from generated exact solution.
482 *
483  CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
484  $ result( 3 ) )
485  nt = 3
486 *
487 * Print information about the tests that did not
488 * pass the threshold.
489 *
490  DO 60 k = 1, nt
491  IF( result( k ).GE.thresh ) THEN
492  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
493  $ CALL aladhd( nout, path )
494  WRITE( nout, fmt = 9999 )'CPOSV ', uplo,
495  $ n, imat, k, result( k )
496  nfail = nfail + 1
497  END IF
498  60 CONTINUE
499  nrun = nrun + nt
500  70 CONTINUE
501  END IF
502 *
503 * --- Test CPOSVX ---
504 *
505  IF( .NOT.prefac )
506  $ CALL claset( uplo, n, n, cmplx( zero ),
507  $ cmplx( zero ), afac, lda )
508  CALL claset( 'Full', n, nrhs, cmplx( zero ),
509  $ cmplx( zero ), x, lda )
510  IF( iequed.GT.1 .AND. n.GT.0 ) THEN
511 *
512 * Equilibrate the matrix if FACT='F' and
513 * EQUED='Y'.
514 *
515  CALL claqhe( uplo, n, a, lda, s, scond, amax,
516  $ equed )
517  END IF
518 *
519 * Solve the system and compute the condition number
520 * and error bounds using CPOSVX.
521 *
522  srnamt = 'CPOSVX'
523  CALL cposvx( fact, uplo, n, nrhs, a, lda, afac,
524  $ lda, equed, s, b, lda, x, lda, rcond,
525  $ rwork, rwork( nrhs+1 ), work,
526  $ rwork( 2*nrhs+1 ), info )
527 *
528 * Check the error code from CPOSVX.
529 *
530  IF( info.NE.izero ) THEN
531  CALL alaerh( path, 'CPOSVX', info, izero,
532  $ fact // uplo, n, n, -1, -1, nrhs,
533  $ imat, nfail, nerrs, nout )
534  GO TO 90
535  END IF
536 *
537  IF( info.EQ.0 ) THEN
538  IF( .NOT.prefac ) THEN
539 *
540 * Reconstruct matrix from factors and compute
541 * residual.
542 *
543  CALL cpot01( uplo, n, a, lda, afac, lda,
544  $ rwork( 2*nrhs+1 ), result( 1 ) )
545  k1 = 1
546  ELSE
547  k1 = 2
548  END IF
549 *
550 * Compute residual of the computed solution.
551 *
552  CALL clacpy( 'Full', n, nrhs, bsav, lda, work,
553  $ lda )
554  CALL cpot02( uplo, n, nrhs, asav, lda, x, lda,
555  $ work, lda, rwork( 2*nrhs+1 ),
556  $ result( 2 ) )
557 *
558 * Check solution from generated exact solution.
559 *
560  IF( nofact .OR. ( prefac .AND. lsame( equed,
561  $ 'N' ) ) ) THEN
562  CALL cget04( n, nrhs, x, lda, xact, lda,
563  $ rcondc, result( 3 ) )
564  ELSE
565  CALL cget04( n, nrhs, x, lda, xact, lda,
566  $ roldc, result( 3 ) )
567  END IF
568 *
569 * Check the error bounds from iterative
570 * refinement.
571 *
572  CALL cpot05( uplo, n, nrhs, asav, lda, b, lda,
573  $ x, lda, xact, lda, rwork,
574  $ rwork( nrhs+1 ), result( 4 ) )
575  ELSE
576  k1 = 6
577  END IF
578 *
579 * Compare RCOND from CPOSVX with the computed value
580 * in RCONDC.
581 *
582  result( 6 ) = sget06( rcond, rcondc )
583 *
584 * Print information about the tests that did not pass
585 * the threshold.
586 *
587  DO 80 k = k1, 6
588  IF( result( k ).GE.thresh ) THEN
589  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
590  $ CALL aladhd( nout, path )
591  IF( prefac ) THEN
592  WRITE( nout, fmt = 9997 )'CPOSVX', fact,
593  $ uplo, n, equed, imat, k, result( k )
594  ELSE
595  WRITE( nout, fmt = 9998 )'CPOSVX', fact,
596  $ uplo, n, imat, k, result( k )
597  END IF
598  nfail = nfail + 1
599  END IF
600  80 CONTINUE
601  nrun = nrun + 7 - k1
602 *
603 * --- Test CPOSVXX ---
604 *
605 * Restore the matrices A and B.
606 *
607  CALL clacpy( 'Full', n, n, asav, lda, a, lda )
608  CALL clacpy( 'Full', n, nrhs, bsav, lda, b, lda )
609 
610  IF( .NOT.prefac )
611  $ CALL claset( uplo, n, n, cmplx( zero ),
612  $ cmplx( zero ), afac, lda )
613  CALL claset( 'Full', n, nrhs, cmplx( zero ),
614  $ cmplx( zero ), x, lda )
615  IF( iequed.GT.1 .AND. n.GT.0 ) THEN
616 *
617 * Equilibrate the matrix if FACT='F' and
618 * EQUED='Y'.
619 *
620  CALL claqhe( uplo, n, a, lda, s, scond, amax,
621  $ equed )
622  END IF
623 *
624 * Solve the system and compute the condition number
625 * and error bounds using CPOSVXX.
626 *
627  srnamt = 'CPOSVXX'
628  n_err_bnds = 3
629  CALL cposvxx( fact, uplo, n, nrhs, a, lda, afac,
630  $ lda, equed, s, b, lda, x,
631  $ lda, rcond, rpvgrw_svxx, berr, n_err_bnds,
632  $ errbnds_n, errbnds_c, 0, zero, work,
633  $ rwork( 2*nrhs+1 ), info )
634 *
635 * Check the error code from CPOSVXX.
636 *
637  IF( info.EQ.n+1 ) GOTO 90
638  IF( info.NE.izero ) THEN
639  CALL alaerh( path, 'CPOSVXX', info, izero,
640  $ fact // uplo, n, n, -1, -1, nrhs,
641  $ imat, nfail, nerrs, nout )
642  GO TO 90
643  END IF
644 *
645  IF( info.EQ.0 ) THEN
646  IF( .NOT.prefac ) THEN
647 *
648 * Reconstruct matrix from factors and compute
649 * residual.
650 *
651  CALL cpot01( uplo, n, a, lda, afac, lda,
652  $ rwork( 2*nrhs+1 ), result( 1 ) )
653  k1 = 1
654  ELSE
655  k1 = 2
656  END IF
657 *
658 * Compute residual of the computed solution.
659 *
660  CALL clacpy( 'Full', n, nrhs, bsav, lda, work,
661  $ lda )
662  CALL cpot02( uplo, n, nrhs, asav, lda, x, lda,
663  $ work, lda, rwork( 2*nrhs+1 ),
664  $ result( 2 ) )
665 *
666 * Check solution from generated exact solution.
667 *
668  IF( nofact .OR. ( prefac .AND. lsame( equed,
669  $ 'N' ) ) ) THEN
670  CALL cget04( n, nrhs, x, lda, xact, lda,
671  $ rcondc, result( 3 ) )
672  ELSE
673  CALL cget04( n, nrhs, x, lda, xact, lda,
674  $ roldc, result( 3 ) )
675  END IF
676 *
677 * Check the error bounds from iterative
678 * refinement.
679 *
680  CALL cpot05( uplo, n, nrhs, asav, lda, b, lda,
681  $ x, lda, xact, lda, rwork,
682  $ rwork( nrhs+1 ), result( 4 ) )
683  ELSE
684  k1 = 6
685  END IF
686 *
687 * Compare RCOND from CPOSVXX with the computed value
688 * in RCONDC.
689 *
690  result( 6 ) = sget06( rcond, rcondc )
691 *
692 * Print information about the tests that did not pass
693 * the threshold.
694 *
695  DO 85 k = k1, 6
696  IF( result( k ).GE.thresh ) THEN
697  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
698  $ CALL aladhd( nout, path )
699  IF( prefac ) THEN
700  WRITE( nout, fmt = 9997 )'CPOSVXX', fact,
701  $ uplo, n, equed, imat, k, result( k )
702  ELSE
703  WRITE( nout, fmt = 9998 )'CPOSVXX', fact,
704  $ uplo, n, imat, k, result( k )
705  END IF
706  nfail = nfail + 1
707  END IF
708  85 CONTINUE
709  nrun = nrun + 7 - k1
710  90 CONTINUE
711  100 CONTINUE
712  110 CONTINUE
713  120 CONTINUE
714  130 CONTINUE
715 *
716 * Print a summary of the results.
717 *
718  CALL alasvm( path, nout, nfail, nrun, nerrs )
719 *
720 
721 * Test Error Bounds for CGESVXX
722 
723  CALL cebchvxx(thresh, path)
724 
725  9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i1,
726  $ ', test(', i1, ')=', g12.5 )
727  9998 FORMAT( 1x, a, ', FACT=''', a1, ''', UPLO=''', a1, ''', N=', i5,
728  $ ', type ', i1, ', test(', i1, ')=', g12.5 )
729  9997 FORMAT( 1x, a, ', FACT=''', a1, ''', UPLO=''', a1, ''', N=', i5,
730  $ ', EQUED=''', a1, ''', type ', i1, ', test(', i1, ') =',
731  $ g12.5 )
732  RETURN
733 *
734 * End of CDRVPOX
735 *
736  END
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine aladhd(IOUNIT, PATH)
ALADHD
Definition: aladhd.f:90
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:208
subroutine cpot05(UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
CPOT05
Definition: cpot05.f:165
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
Definition: clatb4.f:121
subroutine cget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
CGET04
Definition: cget04.f:102
subroutine cdrvpo(DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK, RWORK, NOUT)
CDRVPO
Definition: cdrvpo.f:159
subroutine cebchvxx(THRESH, PATH)
CEBCHVXX
Definition: cebchvxx.f:96
subroutine claipd(N, A, INDA, VINDA)
CLAIPD
Definition: claipd.f:83
subroutine cpot01(UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID)
CPOT01
Definition: cpot01.f:106
subroutine cpot02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
CPOT02
Definition: cpot02.f:127
subroutine cerrvx(PATH, NUNIT)
CERRVX
Definition: cerrvx.f:55
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:332
subroutine claqhe(UPLO, N, A, LDA, S, SCOND, AMAX, EQUED)
CLAQHE scales a Hermitian matrix.
Definition: claqhe.f:134
subroutine claset(UPLO, M, N, ALPHA, BETA, A, LDA)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: claset.f:106
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:103
subroutine cpoequ(N, A, LDA, S, SCOND, AMAX, INFO)
CPOEQU
Definition: cpoequ.f:113
subroutine cpotrf(UPLO, N, A, LDA, INFO)
CPOTRF
Definition: cpotrf.f:107
subroutine cpotri(UPLO, N, A, LDA, INFO)
CPOTRI
Definition: cpotri.f:95
subroutine cposvx(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO)
CPOSVX computes the solution to system of linear equations A * X = B for PO matrices
Definition: cposvx.f:306
subroutine cposvxx(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED, S, B, LDB, X, LDX, RCOND, RPVGRW, BERR, N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK, INFO)
CPOSVXX computes the solution to system of linear equations A * X = B for PO matrices
Definition: cposvxx.f:496
subroutine cposv(UPLO, N, NRHS, A, LDA, B, LDB, INFO)
CPOSV computes the solution to system of linear equations A * X = B for PO matrices
Definition: cposv.f:130