LAPACK  3.8.0 LAPACK: Linear Algebra PACKage
cchksy_aa_2stage.f
Go to the documentation of this file.
1 *> \brief \b CCHKSY_AA_2STAGE
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE CCHKSY_AA_2STAGE( DOTYPE, NN, NVAL, NNB, NBVAL,
12 * NNS, NSVAL, THRESH, TSTERR, NMAX, A,
13 * AFAC, AINV, B, X, XACT, WORK, RWORK,
14 * IWORK, NOUT )
15 *
16 * .. Scalar Arguments ..
17 * LOGICAL TSTERR
18 * INTEGER NMAX, NN, NNB, NNS, NOUT
19 * REAL THRESH
20 * ..
21 * .. Array Arguments ..
22 * LOGICAL DOTYPE( * )
23 * INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
24 * REAL RWORK( * )
25 * COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
26 * \$ WORK( * ), X( * ), XACT( * )
27 * ..
28 *
29 *
30 *> \par Purpose:
31 * =============
32 *>
33 *> \verbatim
34 *>
35 *> CCHKSY_AA_2STAGE tests CSYTRF_AA_2STAGE, -TRS_AA_2STAGE.
36 *> \endverbatim
37 *
38 * Arguments:
39 * ==========
40 *
41 *> \param[in] DOTYPE
42 *> \verbatim
43 *> DOTYPE is LOGICAL array, dimension (NTYPES)
44 *> The matrix types to be used for testing. Matrices of type j
45 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
46 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
47 *> \endverbatim
48 *>
49 *> \param[in] NN
50 *> \verbatim
51 *> NN is INTEGER
52 *> The number of values of N contained in the vector NVAL.
53 *> \endverbatim
54 *>
55 *> \param[in] NVAL
56 *> \verbatim
57 *> NVAL is INTEGER array, dimension (NN)
58 *> The values of the matrix dimension N.
59 *> \endverbatim
60 *>
61 *> \param[in] NNB
62 *> \verbatim
63 *> NNB is INTEGER
64 *> The number of values of NB contained in the vector NBVAL.
65 *> \endverbatim
66 *>
67 *> \param[in] NBVAL
68 *> \verbatim
69 *> NBVAL is INTEGER array, dimension (NBVAL)
70 *> The values of the blocksize NB.
71 *> \endverbatim
72 *>
73 *> \param[in] NNS
74 *> \verbatim
75 *> NNS is INTEGER
76 *> The number of values of NRHS contained in the vector NSVAL.
77 *> \endverbatim
78 *>
79 *> \param[in] NSVAL
80 *> \verbatim
81 *> NSVAL is INTEGER array, dimension (NNS)
82 *> The values of the number of right hand sides NRHS.
83 *> \endverbatim
84 *>
85 *> \param[in] THRESH
86 *> \verbatim
87 *> THRESH is REAL
88 *> The threshold value for the test ratios. A result is
89 *> included in the output file if RESULT >= THRESH. To have
90 *> every test ratio printed, use THRESH = 0.
91 *> \endverbatim
92 *>
93 *> \param[in] TSTERR
94 *> \verbatim
95 *> TSTERR is LOGICAL
96 *> Flag that indicates whether error exits are to be tested.
97 *> \endverbatim
98 *>
99 *> \param[in] NMAX
100 *> \verbatim
101 *> NMAX is INTEGER
102 *> The maximum value permitted for N, used in dimensioning the
103 *> work arrays.
104 *> \endverbatim
105 *>
106 *> \param[out] A
107 *> \verbatim
108 *> A is COMPLEX array, dimension (NMAX*NMAX)
109 *> \endverbatim
110 *>
111 *> \param[out] AFAC
112 *> \verbatim
113 *> AFAC is COMPLEX array, dimension (NMAX*NMAX)
114 *> \endverbatim
115 *>
116 *> \param[out] AINV
117 *> \verbatim
118 *> AINV is COMPLEX array, dimension (NMAX*NMAX)
119 *> \endverbatim
120 *>
121 *> \param[out] B
122 *> \verbatim
123 *> B is COMPLEX array, dimension (NMAX*NSMAX)
124 *> where NSMAX is the largest entry in NSVAL.
125 *> \endverbatim
126 *>
127 *> \param[out] X
128 *> \verbatim
129 *> X is COMPLEX array, dimension (NMAX*NSMAX)
130 *> \endverbatim
131 *>
132 *> \param[out] XACT
133 *> \verbatim
134 *> XACT is COMPLEX array, dimension (NMAX*NSMAX)
135 *> \endverbatim
136 *>
137 *> \param[out] WORK
138 *> \verbatim
139 *> WORK is COMPLEX array, dimension (NMAX*max(3,NSMAX))
140 *> \endverbatim
141 *>
142 *> \param[out] RWORK
143 *> \verbatim
144 *> RWORK is COMPLEX array, dimension (max(NMAX,2*NSMAX))
145 *> \endverbatim
146 *>
147 *> \param[out] IWORK
148 *> \verbatim
149 *> IWORK is INTEGER array, dimension (2*NMAX)
150 *> \endverbatim
151 *>
152 *> \param[in] NOUT
153 *> \verbatim
154 *> NOUT is INTEGER
155 *> The unit number for output.
156 *> \endverbatim
157 *
158 * Authors:
159 * ========
160 *
161 *> \author Univ. of Tennessee
162 *> \author Univ. of California Berkeley
163 *> \author Univ. of Colorado Denver
164 *> \author NAG Ltd.
165 *
166 *> \date November 2017
167 *
168 *> \ingroup complex_lin
169 *
170 * =====================================================================
171  SUBROUTINE cchksy_aa_2stage( DOTYPE, NN, NVAL, NNB, NBVAL, NNS,
172  \$ NSVAL, THRESH, TSTERR, NMAX, A, AFAC, AINV,
173  \$ B, X, XACT, WORK, RWORK, IWORK, NOUT )
174 *
175 * -- LAPACK test routine (version 3.8.0) --
176 * -- LAPACK is a software package provided by Univ. of Tennessee, --
177 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
178 * November 2017
179 *
180  IMPLICIT NONE
181 *
182 * .. Scalar Arguments ..
183  LOGICAL TSTERR
184  INTEGER NN, NNB, NNS, NMAX, NOUT
185  REAL THRESH
186 * ..
187 * .. Array Arguments ..
188  LOGICAL DOTYPE( * )
189  INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
190  COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
191  \$ work( * ), x( * ), xact( * )
192  REAL RWORK( * )
193 * ..
194 *
195 * =====================================================================
196 *
197 * .. Parameters ..
198  COMPLEX CZERO
199  parameter( czero = ( 0.0e+0, 0.0e+0 ) )
200  INTEGER NTYPES
201  parameter( ntypes = 10 )
202  INTEGER NTESTS
203  parameter( ntests = 9 )
204 * ..
205 * .. Local Scalars ..
206  LOGICAL ZEROT
207  CHARACTER DIST, TYPE, UPLO, XTYPE
208  CHARACTER*3 PATH, MATPATH
209  INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
210  \$ iuplo, izero, j, k, kl, ku, lda, lwork, mode,
211  \$ n, nb, nerrs, nfail, nimat, nrhs, nrun, nt
212  REAL ANORM, CNDNUM
213 * ..
214 * .. Local Arrays ..
215  CHARACTER UPLOS( 2 )
216  INTEGER ISEED( 4 ), ISEEDY( 4 )
217  REAL RESULT( ntests )
218 * ..
219 * .. External Subroutines ..
220  EXTERNAL alaerh, alahd, alasum, cerrsy, clacpy, clarhs,
221  \$ clatb4, clatms, csyt02, csyt01,
223  \$ xlaenv
224 * ..
225 * .. Intrinsic Functions ..
226  INTRINSIC max, min
227 * ..
228 * .. Scalars in Common ..
229  LOGICAL LERR, OK
230  CHARACTER*32 SRNAMT
231  INTEGER INFOT, NUNIT
232 * ..
233 * .. Common blocks ..
234  COMMON / infoc / infot, nunit, ok, lerr
235  COMMON / srnamc / srnamt
236 * ..
237 * .. Data statements ..
238  DATA iseedy / 1988, 1989, 1990, 1991 /
239  DATA uplos / 'U', 'L' /
240 * ..
241 * .. Executable Statements ..
242 *
243 * Initialize constants and the random number seed.
244 *
245 * Test path
246 *
247  path( 1: 1 ) = 'Complex precision'
248  path( 2: 3 ) = 'S2'
249 *
250 * Path to generate matrices
251 *
252  matpath( 1: 1 ) = 'Complex precision'
253  matpath( 2: 3 ) = 'SY'
254  nrun = 0
255  nfail = 0
256  nerrs = 0
257  DO 10 i = 1, 4
258  iseed( i ) = iseedy( i )
259  10 CONTINUE
260 *
261 * Test the error exits
262 *
263  IF( tsterr )
264  \$ CALL cerrsy( path, nout )
265  infot = 0
266 *
267 * Set the minimum block size for which the block routine should
268 * be used, which will be later returned by ILAENV
269 *
270  CALL xlaenv( 2, 2 )
271 *
272 * Do for each value of N in NVAL
273 *
274  DO 180 in = 1, nn
275  n = nval( in )
276  IF( n .GT. nmax ) THEN
277  nfail = nfail + 1
278  WRITE(nout, 9995) 'M ', n, nmax
279  GO TO 180
280  END IF
281  lda = max( n, 1 )
282  xtype = 'N'
283  nimat = ntypes
284  IF( n.LE.0 )
285  \$ nimat = 1
286 *
287  izero = 0
288 *
289 * Do for each value of matrix type IMAT
290 *
291  DO 170 imat = 1, nimat
292 *
293 * Do the tests only if DOTYPE( IMAT ) is true.
294 *
295  IF( .NOT.dotype( imat ) )
296  \$ GO TO 170
297 *
298 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
299 *
300  zerot = imat.GE.3 .AND. imat.LE.6
301  IF( zerot .AND. n.LT.imat-2 )
302  \$ GO TO 170
303 *
304 * Do first for UPLO = 'U', then for UPLO = 'L'
305 *
306  DO 160 iuplo = 1, 2
307  uplo = uplos( iuplo )
308 *
309 * Begin generate the test matrix A.
310 *
311 *
312 * Set up parameters with CLATB4 for the matrix generator
313 * based on the type of matrix to be generated.
314 *
315  CALL clatb4( matpath, imat, n, n, TYPE, KL, KU,
316  \$ anorm, mode, cndnum, dist )
317 *
318 * Generate a matrix with CLATMS.
319 *
320  srnamt = 'CLATMS'
321  CALL clatms( n, n, dist, iseed, TYPE, RWORK, MODE,
322  \$ cndnum, anorm, kl, ku, uplo, a, lda, work,
323  \$ info )
324 *
325 * Check error code from CLATMS and handle error.
326 *
327  IF( info.NE.0 ) THEN
328  CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n, -1,
329  \$ -1, -1, imat, nfail, nerrs, nout )
330 *
331 * Skip all tests for this generated matrix
332 *
333  GO TO 160
334  END IF
335 *
336 * For matrix types 3-6, zero one or more rows and
337 * columns of the matrix to test that INFO is returned
338 * correctly.
339 *
340  IF( zerot ) THEN
341  IF( imat.EQ.3 ) THEN
342  izero = 1
343  ELSE IF( imat.EQ.4 ) THEN
344  izero = n
345  ELSE
346  izero = n / 2 + 1
347  END IF
348 *
349  IF( imat.LT.6 ) THEN
350 *
351 * Set row and column IZERO to zero.
352 *
353  IF( iuplo.EQ.1 ) THEN
354  ioff = ( izero-1 )*lda
355  DO 20 i = 1, izero - 1
356  a( ioff+i ) = czero
357  20 CONTINUE
358  ioff = ioff + izero
359  DO 30 i = izero, n
360  a( ioff ) = czero
361  ioff = ioff + lda
362  30 CONTINUE
363  ELSE
364  ioff = izero
365  DO 40 i = 1, izero - 1
366  a( ioff ) = czero
367  ioff = ioff + lda
368  40 CONTINUE
369  ioff = ioff - izero
370  DO 50 i = izero, n
371  a( ioff+i ) = czero
372  50 CONTINUE
373  END IF
374  ELSE
375  IF( iuplo.EQ.1 ) THEN
376 *
377 * Set the first IZERO rows and columns to zero.
378 *
379  ioff = 0
380  DO 70 j = 1, n
381  i2 = min( j, izero )
382  DO 60 i = 1, i2
383  a( ioff+i ) = czero
384  60 CONTINUE
385  ioff = ioff + lda
386  70 CONTINUE
387  izero = 1
388  ELSE
389 *
390 * Set the last IZERO rows and columns to zero.
391 *
392  ioff = 0
393  DO 90 j = 1, n
394  i1 = max( j, izero )
395  DO 80 i = i1, n
396  a( ioff+i ) = czero
397  80 CONTINUE
398  ioff = ioff + lda
399  90 CONTINUE
400  END IF
401  END IF
402  ELSE
403  izero = 0
404  END IF
405 *
406 * End generate the test matrix A.
407 *
408 * Do for each value of NB in NBVAL
409 *
410  DO 150 inb = 1, nnb
411 *
412 * Set the optimal blocksize, which will be later
413 * returned by ILAENV.
414 *
415  nb = nbval( inb )
416  CALL xlaenv( 1, nb )
417 *
418 * Copy the test matrix A into matrix AFAC which
419 * will be factorized in place. This is needed to
420 * preserve the test matrix A for subsequent tests.
421 *
422  CALL clacpy( uplo, n, n, a, lda, afac, lda )
423 *
424 * Compute the L*D*L**T or U*D*U**T factorization of the
425 * matrix. IWORK stores details of the interchanges and
426 * the block structure of D. AINV is a work array for
427 * block factorization, LWORK is the length of AINV.
428 *
429  srnamt = 'CSYTRF_AA_2STAGE'
430  lwork = min(n*nb, 3*nmax*nmax)
431  CALL csytrf_aa_2stage( uplo, n, afac, lda,
432  \$ ainv, (3*nb+1)*n,
433  \$ iwork, iwork( 1+n ),
434  \$ work, lwork,
435  \$ info )
436 *
437 * Adjust the expected value of INFO to account for
438 * pivoting.
439 *
440  IF( izero.GT.0 ) THEN
441  j = 1
442  k = izero
443  100 CONTINUE
444  IF( j.EQ.k ) THEN
445  k = iwork( j )
446  ELSE IF( iwork( j ).EQ.k ) THEN
447  k = j
448  END IF
449  IF( j.LT.k ) THEN
450  j = j + 1
451  GO TO 100
452  END IF
453  ELSE
454  k = 0
455  END IF
456 *
457 * Check error code from CSYTRF and handle error.
458 *
459  IF( info.NE.k ) THEN
460  CALL alaerh( path, 'CSYTRF_AA_2STAGE', info, k,
461  \$ uplo, n, n, -1, -1, nb, imat, nfail,
462  \$ nerrs, nout )
463  END IF
464 *
465 *+ TEST 1
466 * Reconstruct matrix from factors and compute residual.
467 *
468 c CALL CSYT01_AA( UPLO, N, A, LDA, AFAC, LDA, IWORK,
469 c \$ AINV, LDA, RWORK, RESULT( 1 ) )
470 c NT = 1
471  nt = 0
472 *
473 *
474 * Print information about the tests that did not pass
475 * the threshold.
476 *
477  DO 110 k = 1, nt
478  IF( result( k ).GE.thresh ) THEN
479  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
480  \$ CALL alahd( nout, path )
481  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
482  \$ result( k )
483  nfail = nfail + 1
484  END IF
485  110 CONTINUE
486  nrun = nrun + nt
487 *
488 * Skip solver test if INFO is not 0.
489 *
490  IF( info.NE.0 ) THEN
491  GO TO 140
492  END IF
493 *
494 * Do for each value of NRHS in NSVAL.
495 *
496  DO 130 irhs = 1, nns
497  nrhs = nsval( irhs )
498 *
499 *+ TEST 2 (Using TRS)
500 * Solve and compute residual for A * X = B.
501 *
502 * Choose a set of NRHS random solution vectors
503 * stored in XACT and set up the right hand side B
504 *
505  srnamt = 'CLARHS'
506  CALL clarhs( matpath, xtype, uplo, ' ', n, n,
507  \$ kl, ku, nrhs, a, lda, xact, lda,
508  \$ b, lda, iseed, info )
509  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
510 *
511  srnamt = 'CSYTRS_AA_2STAGE'
512  lwork = max( 1, 3*n-2 )
513  CALL csytrs_aa_2stage( uplo, n, nrhs, afac, lda,
514  \$ ainv, (3*nb+1)*n, iwork, iwork( 1+n ),
515  \$ x, lda, info )
516 *
517 * Check error code from CSYTRS and handle error.
518 *
519  IF( info.NE.0 ) THEN
520  IF( izero.EQ.0 ) THEN
521  CALL alaerh( path, 'CSYTRS_AA_2STAGE',
522  \$ info, 0, uplo, n, n, -1, -1,
523  \$ nrhs, imat, nfail, nerrs, nout )
524  END IF
525  ELSE
526  CALL clacpy( 'Full', n, nrhs, b, lda, work, lda
527  \$ )
528 *
529 * Compute the residual for the solution
530 *
531  CALL csyt02( uplo, n, nrhs, a, lda, x, lda,
532  \$ work, lda, rwork, result( 2 ) )
533 *
534 *
535 * Print information about the tests that did not pass
536 * the threshold.
537 *
538  DO 120 k = 2, 2
539  IF( result( k ).GE.thresh ) THEN
540  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
541  \$ CALL alahd( nout, path )
542  WRITE( nout, fmt = 9998 )uplo, n, nrhs,
543  \$ imat, k, result( k )
544  nfail = nfail + 1
545  END IF
546  120 CONTINUE
547  END IF
548  nrun = nrun + 1
549 *
550 * End do for each value of NRHS in NSVAL.
551 *
552  130 CONTINUE
553  140 CONTINUE
554  150 CONTINUE
555  160 CONTINUE
556  170 CONTINUE
557  180 CONTINUE
558 *
559 * Print a summary of the results.
560 *
561  CALL alasum( path, nout, nfail, nrun, nerrs )
562 *
563  9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
564  \$ i2, ', test ', i2, ', ratio =', g12.5 )
565  9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
566  \$ i2, ', test(', i2, ') =', g12.5 )
567  9995 FORMAT( ' Invalid input value: ', a4, '=', i6, '; must be <=',
568  \$ i6 )
569  RETURN
570 *
571 * End of CCHKSY_AA_2STAGE
572 *
573  END
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine cerrsy(PATH, NUNIT)
CERRSY
Definition: cerrsy.f:57
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:149
subroutine csytrf_aa_2stage(UPLO, N, A, LDA, TB, LTB, IPIV, IPIV2, WORK, LWORK, INFO)
CSYTRF_AA_2STAGE
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:83
subroutine csyt02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
CSYT02
Definition: csyt02.f:129
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:105
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:334
subroutine csytrs_aa_2stage(UPLO, N, NRHS, A, LDA, TB, LTB, IPIV, IPIV2, B, LDB, INFO)
CSYTRS_AA_2STAGE
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:211
subroutine csyt01(UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
CSYT01
Definition: csyt01.f:127
subroutine cchksy_aa_2stage(DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL, THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, NOUT)
CCHKSY_AA_2STAGE
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:75
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
Definition: clatb4.f:123