LAPACK  3.10.1
LAPACK: Linear Algebra PACKage
zckgsv.f
Go to the documentation of this file.
1 *> \brief \b ZCKGSV
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE ZCKGSV( NM, MVAL, PVAL, NVAL, NMATS, ISEED, THRESH,
12 * NMAX, A, AF, B, BF, U, V, Q, ALPHA, BETA, R,
13 * IWORK, WORK, RWORK, NIN, NOUT, INFO )
14 *
15 * .. Scalar Arguments ..
16 * INTEGER INFO, NIN, NM, NMATS, NMAX, NOUT
17 * DOUBLE PRECISION THRESH
18 * ..
19 * .. Array Arguments ..
20 * INTEGER ISEED( 4 ), IWORK( * ), MVAL( * ), NVAL( * ),
21 * $ PVAL( * )
22 * DOUBLE PRECISION ALPHA( * ), BETA( * ), RWORK( * )
23 * COMPLEX*16 A( * ), AF( * ), B( * ), BF( * ), Q( * ),
24 * $ R( * ), U( * ), V( * ), WORK( * )
25 * ..
26 *
27 *
28 *> \par Purpose:
29 * =============
30 *>
31 *> \verbatim
32 *>
33 *> ZCKGSV tests ZGGSVD:
34 *> the GSVD for M-by-N matrix A and P-by-N matrix B.
35 *> \endverbatim
36 *
37 * Arguments:
38 * ==========
39 *
40 *> \param[in] NM
41 *> \verbatim
42 *> NM is INTEGER
43 *> The number of values of M contained in the vector MVAL.
44 *> \endverbatim
45 *>
46 *> \param[in] MVAL
47 *> \verbatim
48 *> MVAL is INTEGER array, dimension (NM)
49 *> The values of the matrix row dimension M.
50 *> \endverbatim
51 *>
52 *> \param[in] PVAL
53 *> \verbatim
54 *> PVAL is INTEGER array, dimension (NP)
55 *> The values of the matrix row dimension P.
56 *> \endverbatim
57 *>
58 *> \param[in] NVAL
59 *> \verbatim
60 *> NVAL is INTEGER array, dimension (NN)
61 *> The values of the matrix column dimension N.
62 *> \endverbatim
63 *>
64 *> \param[in] NMATS
65 *> \verbatim
66 *> NMATS is INTEGER
67 *> The number of matrix types to be tested for each combination
68 *> of matrix dimensions. If NMATS >= NTYPES (the maximum
69 *> number of matrix types), then all the different types are
70 *> generated for testing. If NMATS < NTYPES, another input line
71 *> is read to get the numbers of the matrix types to be used.
72 *> \endverbatim
73 *>
74 *> \param[in,out] ISEED
75 *> \verbatim
76 *> ISEED is INTEGER array, dimension (4)
77 *> On entry, the seed of the random number generator. The array
78 *> elements should be between 0 and 4095, otherwise they will be
79 *> reduced mod 4096, and ISEED(4) must be odd.
80 *> On exit, the next seed in the random number sequence after
81 *> all the test matrices have been generated.
82 *> \endverbatim
83 *>
84 *> \param[in] THRESH
85 *> \verbatim
86 *> THRESH is DOUBLE PRECISION
87 *> The threshold value for the test ratios. A result is
88 *> included in the output file if RESULT >= THRESH. To have
89 *> every test ratio printed, use THRESH = 0.
90 *> \endverbatim
91 *>
92 *> \param[in] NMAX
93 *> \verbatim
94 *> NMAX is INTEGER
95 *> The maximum value permitted for M or N, used in dimensioning
96 *> the work arrays.
97 *> \endverbatim
98 *>
99 *> \param[out] A
100 *> \verbatim
101 *> A is COMPLEX*16 array, dimension (NMAX*NMAX)
102 *> \endverbatim
103 *>
104 *> \param[out] AF
105 *> \verbatim
106 *> AF is COMPLEX*16 array, dimension (NMAX*NMAX)
107 *> \endverbatim
108 *>
109 *> \param[out] B
110 *> \verbatim
111 *> B is COMPLEX*16 array, dimension (NMAX*NMAX)
112 *> \endverbatim
113 *>
114 *> \param[out] BF
115 *> \verbatim
116 *> BF is COMPLEX*16 array, dimension (NMAX*NMAX)
117 *> \endverbatim
118 *>
119 *> \param[out] U
120 *> \verbatim
121 *> U is COMPLEX*16 array, dimension (NMAX*NMAX)
122 *> \endverbatim
123 *>
124 *> \param[out] V
125 *> \verbatim
126 *> V is COMPLEX*16 array, dimension (NMAX*NMAX)
127 *> \endverbatim
128 *>
129 *> \param[out] Q
130 *> \verbatim
131 *> Q is COMPLEX*16 array, dimension (NMAX*NMAX)
132 *> \endverbatim
133 *>
134 *> \param[out] ALPHA
135 *> \verbatim
136 *> ALPHA is DOUBLE PRECISION array, dimension (NMAX)
137 *> \endverbatim
138 *>
139 *> \param[out] BETA
140 *> \verbatim
141 *> BETA is DOUBLE PRECISION array, dimension (NMAX)
142 *> \endverbatim
143 *>
144 *> \param[out] R
145 *> \verbatim
146 *> R is COMPLEX*16 array, dimension (NMAX*NMAX)
147 *> \endverbatim
148 *>
149 *> \param[out] IWORK
150 *> \verbatim
151 *> IWORK is INTEGER array, dimension (NMAX)
152 *> \endverbatim
153 *>
154 *> \param[out] WORK
155 *> \verbatim
156 *> WORK is COMPLEX*16 array, dimension (NMAX*NMAX)
157 *> \endverbatim
158 *>
159 *> \param[out] RWORK
160 *> \verbatim
161 *> RWORK is DOUBLE PRECISION array, dimension (NMAX)
162 *> \endverbatim
163 *>
164 *> \param[in] NIN
165 *> \verbatim
166 *> NIN is INTEGER
167 *> The unit number for input.
168 *> \endverbatim
169 *>
170 *> \param[in] NOUT
171 *> \verbatim
172 *> NOUT is INTEGER
173 *> The unit number for output.
174 *> \endverbatim
175 *>
176 *> \param[out] INFO
177 *> \verbatim
178 *> INFO is INTEGER
179 *> = 0 : successful exit
180 *> > 0 : If ZLATMS returns an error code, the absolute value
181 *> of it is returned.
182 *> \endverbatim
183 *
184 * Authors:
185 * ========
186 *
187 *> \author Univ. of Tennessee
188 *> \author Univ. of California Berkeley
189 *> \author Univ. of Colorado Denver
190 *> \author NAG Ltd.
191 *
192 *> \ingroup complex16_eig
193 *
194 * =====================================================================
195  SUBROUTINE zckgsv( NM, MVAL, PVAL, NVAL, NMATS, ISEED, THRESH,
196  $ NMAX, A, AF, B, BF, U, V, Q, ALPHA, BETA, R,
197  $ IWORK, WORK, RWORK, NIN, NOUT, INFO )
198 *
199 * -- LAPACK test routine --
200 * -- LAPACK is a software package provided by Univ. of Tennessee, --
201 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
202 *
203 * .. Scalar Arguments ..
204  INTEGER INFO, NIN, NM, NMATS, NMAX, NOUT
205  DOUBLE PRECISION THRESH
206 * ..
207 * .. Array Arguments ..
208  INTEGER ISEED( 4 ), IWORK( * ), MVAL( * ), NVAL( * ),
209  $ PVAL( * )
210  DOUBLE PRECISION ALPHA( * ), BETA( * ), RWORK( * )
211  COMPLEX*16 A( * ), AF( * ), B( * ), BF( * ), Q( * ),
212  $ r( * ), u( * ), v( * ), work( * )
213 * ..
214 *
215 * =====================================================================
216 *
217 * .. Parameters ..
218  INTEGER NTESTS
219  PARAMETER ( NTESTS = 12 )
220  INTEGER NTYPES
221  parameter( ntypes = 8 )
222 * ..
223 * .. Local Scalars ..
224  LOGICAL FIRSTT
225  CHARACTER DISTA, DISTB, TYPE
226  CHARACTER*3 PATH
227  INTEGER I, IINFO, IM, IMAT, KLA, KLB, KUA, KUB, LDA,
228  $ ldb, ldq, ldr, ldu, ldv, lwork, m, modea,
229  $ modeb, n, nfail, nrun, nt, p
230  DOUBLE PRECISION ANORM, BNORM, CNDNMA, CNDNMB
231 * ..
232 * .. Local Arrays ..
233  LOGICAL DOTYPE( NTYPES )
234  DOUBLE PRECISION RESULT( NTESTS )
235 * ..
236 * .. External Subroutines ..
237  EXTERNAL alahdg, alareq, alasum, dlatb9, zgsvts3, zlatms
238 * ..
239 * .. Intrinsic Functions ..
240  INTRINSIC abs
241 * ..
242 * .. Executable Statements ..
243 *
244 * Initialize constants and the random number seed.
245 *
246  path( 1: 3 ) = 'GSV'
247  info = 0
248  nrun = 0
249  nfail = 0
250  firstt = .true.
251  CALL alareq( path, nmats, dotype, ntypes, nin, nout )
252  lda = nmax
253  ldb = nmax
254  ldu = nmax
255  ldv = nmax
256  ldq = nmax
257  ldr = nmax
258  lwork = nmax*nmax
259 *
260 * Do for each value of M in MVAL.
261 *
262  DO 30 im = 1, nm
263  m = mval( im )
264  p = pval( im )
265  n = nval( im )
266 *
267  DO 20 imat = 1, ntypes
268 *
269 * Do the tests only if DOTYPE( IMAT ) is true.
270 *
271  IF( .NOT.dotype( imat ) )
272  $ GO TO 20
273 *
274 * Set up parameters with DLATB9 and generate test
275 * matrices A and B with ZLATMS.
276 *
277  CALL dlatb9( path, imat, m, p, n, TYPE, kla, kua, klb, kub,
278  $ anorm, bnorm, modea, modeb, cndnma, cndnmb,
279  $ dista, distb )
280 *
281 * Generate M by N matrix A
282 *
283  CALL zlatms( m, n, dista, iseed, TYPE, rwork, modea, cndnma,
284  $ anorm, kla, kua, 'No packing', a, lda, work,
285  $ iinfo )
286  IF( iinfo.NE.0 ) THEN
287  WRITE( nout, fmt = 9999 )iinfo
288  info = abs( iinfo )
289  GO TO 20
290  END IF
291 *
292 * Generate P by N matrix B
293 *
294  CALL zlatms( p, n, distb, iseed, TYPE, rwork, modeb, cndnmb,
295  $ bnorm, klb, kub, 'No packing', b, ldb, work,
296  $ iinfo )
297  IF( iinfo.NE.0 ) THEN
298  WRITE( nout, fmt = 9999 )iinfo
299  info = abs( iinfo )
300  GO TO 20
301  END IF
302 *
303  nt = 6
304 *
305  CALL zgsvts3( m, p, n, a, af, lda, b, bf, ldb, u, ldu, v,
306  $ ldv, q, ldq, alpha, beta, r, ldr, iwork, work,
307  $ lwork, rwork, result )
308 *
309 * Print information about the tests that did not
310 * pass the threshold.
311 *
312  DO 10 i = 1, nt
313  IF( result( i ).GE.thresh ) THEN
314  IF( nfail.EQ.0 .AND. firstt ) THEN
315  firstt = .false.
316  CALL alahdg( nout, path )
317  END IF
318  WRITE( nout, fmt = 9998 )m, p, n, imat, i,
319  $ result( i )
320  nfail = nfail + 1
321  END IF
322  10 CONTINUE
323  nrun = nrun + nt
324 *
325  20 CONTINUE
326  30 CONTINUE
327 *
328 * Print a summary of the results.
329 *
330  CALL alasum( path, nout, nfail, nrun, 0 )
331 *
332  9999 FORMAT( ' ZLATMS in ZCKGSV INFO = ', i5 )
333  9998 FORMAT( ' M=', i4, ' P=', i4, ', N=', i4, ', type ', i2,
334  $ ', test ', i2, ', ratio=', g13.6 )
335  RETURN
336 *
337 * End of ZCKGSV
338 *
339  END
subroutine alareq(PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT)
ALAREQ
Definition: alareq.f:90
subroutine alahdg(IOUNIT, PATH)
ALAHDG
Definition: alahdg.f:62
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:73
subroutine zckgsv(NM, MVAL, PVAL, NVAL, NMATS, ISEED, THRESH, NMAX, A, AF, B, BF, U, V, Q, ALPHA, BETA, R, IWORK, WORK, RWORK, NIN, NOUT, INFO)
ZCKGSV
Definition: zckgsv.f:198
subroutine zgsvts3(M, P, N, A, AF, LDA, B, BF, LDB, U, LDU, V, LDV, Q, LDQ, ALPHA, BETA, R, LDR, IWORK, WORK, LWORK, RWORK, RESULT)
ZGSVTS3
Definition: zgsvts3.f:209
subroutine zlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
ZLATMS
Definition: zlatms.f:332
subroutine dlatb9(PATH, IMAT, M, P, N, TYPE, KLA, KUA, KLB, KUB, ANORM, BNORM, MODEA, MODEB, CNDNMA, CNDNMB, DISTA, DISTB)
DLATB9
Definition: dlatb9.f:170