LAPACK  3.8.0
LAPACK: Linear Algebra PACKage

◆ spbequ()

subroutine spbequ ( character  UPLO,
integer  N,
integer  KD,
real, dimension( ldab, * )  AB,
integer  LDAB,
real, dimension( * )  S,
real  SCOND,
real  AMAX,
integer  INFO 
)

SPBEQU

Download SPBEQU + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 SPBEQU computes row and column scalings intended to equilibrate a
 symmetric positive definite band matrix A and reduce its condition
 number (with respect to the two-norm).  S contains the scale factors,
 S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
 elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal.  This
 choice of S puts the condition number of B within a factor N of the
 smallest possible condition number over all possible diagonal
 scalings.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangular of A is stored;
          = 'L':  Lower triangular of A is stored.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in]KD
          KD is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
[in]AB
          AB is REAL array, dimension (LDAB,N)
          The upper or lower triangle of the symmetric band matrix A,
          stored in the first KD+1 rows of the array.  The j-th column
          of A is stored in the j-th column of the array AB as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
[in]LDAB
          LDAB is INTEGER
          The leading dimension of the array A.  LDAB >= KD+1.
[out]S
          S is REAL array, dimension (N)
          If INFO = 0, S contains the scale factors for A.
[out]SCOND
          SCOND is REAL
          If INFO = 0, S contains the ratio of the smallest S(i) to
          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too
          large nor too small, it is not worth scaling by S.
[out]AMAX
          AMAX is REAL
          Absolute value of largest matrix element.  If AMAX is very
          close to overflow or very close to underflow, the matrix
          should be scaled.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = i, the i-th diagonal element is nonpositive.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
December 2016

Definition at line 131 of file spbequ.f.

131 *
132 * -- LAPACK computational routine (version 3.7.0) --
133 * -- LAPACK is a software package provided by Univ. of Tennessee, --
134 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
135 * December 2016
136 *
137 * .. Scalar Arguments ..
138  CHARACTER uplo
139  INTEGER info, kd, ldab, n
140  REAL amax, scond
141 * ..
142 * .. Array Arguments ..
143  REAL ab( ldab, * ), s( * )
144 * ..
145 *
146 * =====================================================================
147 *
148 * .. Parameters ..
149  REAL zero, one
150  parameter( zero = 0.0e+0, one = 1.0e+0 )
151 * ..
152 * .. Local Scalars ..
153  LOGICAL upper
154  INTEGER i, j
155  REAL smin
156 * ..
157 * .. External Functions ..
158  LOGICAL lsame
159  EXTERNAL lsame
160 * ..
161 * .. External Subroutines ..
162  EXTERNAL xerbla
163 * ..
164 * .. Intrinsic Functions ..
165  INTRINSIC max, min, sqrt
166 * ..
167 * .. Executable Statements ..
168 *
169 * Test the input parameters.
170 *
171  info = 0
172  upper = lsame( uplo, 'U' )
173  IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
174  info = -1
175  ELSE IF( n.LT.0 ) THEN
176  info = -2
177  ELSE IF( kd.LT.0 ) THEN
178  info = -3
179  ELSE IF( ldab.LT.kd+1 ) THEN
180  info = -5
181  END IF
182  IF( info.NE.0 ) THEN
183  CALL xerbla( 'SPBEQU', -info )
184  RETURN
185  END IF
186 *
187 * Quick return if possible
188 *
189  IF( n.EQ.0 ) THEN
190  scond = one
191  amax = zero
192  RETURN
193  END IF
194 *
195  IF( upper ) THEN
196  j = kd + 1
197  ELSE
198  j = 1
199  END IF
200 *
201 * Initialize SMIN and AMAX.
202 *
203  s( 1 ) = ab( j, 1 )
204  smin = s( 1 )
205  amax = s( 1 )
206 *
207 * Find the minimum and maximum diagonal elements.
208 *
209  DO 10 i = 2, n
210  s( i ) = ab( j, i )
211  smin = min( smin, s( i ) )
212  amax = max( amax, s( i ) )
213  10 CONTINUE
214 *
215  IF( smin.LE.zero ) THEN
216 *
217 * Find the first non-positive diagonal element and return.
218 *
219  DO 20 i = 1, n
220  IF( s( i ).LE.zero ) THEN
221  info = i
222  RETURN
223  END IF
224  20 CONTINUE
225  ELSE
226 *
227 * Set the scale factors to the reciprocals
228 * of the diagonal elements.
229 *
230  DO 30 i = 1, n
231  s( i ) = one / sqrt( s( i ) )
232  30 CONTINUE
233 *
234 * Compute SCOND = min(S(I)) / max(S(I))
235 *
236  scond = sqrt( smin ) / sqrt( amax )
237  END IF
238  RETURN
239 *
240 * End of SPBEQU
241 *
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
Here is the call graph for this function:
Here is the caller graph for this function: