LAPACK  3.8.0 LAPACK: Linear Algebra PACKage

## ◆ sorbdb6()

 subroutine sorbdb6 ( integer M1, integer M2, integer N, real, dimension(*) X1, integer INCX1, real, dimension(*) X2, integer INCX2, real, dimension(ldq1,*) Q1, integer LDQ1, real, dimension(ldq2,*) Q2, integer LDQ2, real, dimension(*) WORK, integer LWORK, integer INFO )

SORBDB6

Purpose:
``` SORBDB6 orthogonalizes the column vector
X = [ X1 ]
[ X2 ]
with respect to the columns of
Q = [ Q1 ] .
[ Q2 ]
The columns of Q must be orthonormal.

If the projection is zero according to Kahan's "twice is enough"
criterion, then the zero vector is returned.```
Parameters
 [in] M1 ``` M1 is INTEGER The dimension of X1 and the number of rows in Q1. 0 <= M1.``` [in] M2 ``` M2 is INTEGER The dimension of X2 and the number of rows in Q2. 0 <= M2.``` [in] N ``` N is INTEGER The number of columns in Q1 and Q2. 0 <= N.``` [in,out] X1 ``` X1 is REAL array, dimension (M1) On entry, the top part of the vector to be orthogonalized. On exit, the top part of the projected vector.``` [in] INCX1 ``` INCX1 is INTEGER Increment for entries of X1.``` [in,out] X2 ``` X2 is REAL array, dimension (M2) On entry, the bottom part of the vector to be orthogonalized. On exit, the bottom part of the projected vector.``` [in] INCX2 ``` INCX2 is INTEGER Increment for entries of X2.``` [in] Q1 ``` Q1 is REAL array, dimension (LDQ1, N) The top part of the orthonormal basis matrix.``` [in] LDQ1 ``` LDQ1 is INTEGER The leading dimension of Q1. LDQ1 >= M1.``` [in] Q2 ``` Q2 is REAL array, dimension (LDQ2, N) The bottom part of the orthonormal basis matrix.``` [in] LDQ2 ``` LDQ2 is INTEGER The leading dimension of Q2. LDQ2 >= M2.``` [out] WORK ` WORK is REAL array, dimension (LWORK)` [in] LWORK ``` LWORK is INTEGER The dimension of the array WORK. LWORK >= N.``` [out] INFO ``` INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value.```
Date
July 2012

Definition at line 156 of file sorbdb6.f.

156 *
157 * -- LAPACK computational routine (version 3.7.1) --
158 * -- LAPACK is a software package provided by Univ. of Tennessee, --
159 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
160 * July 2012
161 *
162 * .. Scalar Arguments ..
163  INTEGER incx1, incx2, info, ldq1, ldq2, lwork, m1, m2,
164  \$ n
165 * ..
166 * .. Array Arguments ..
167  REAL q1(ldq1,*), q2(ldq2,*), work(*), x1(*), x2(*)
168 * ..
169 *
170 * =====================================================================
171 *
172 * .. Parameters ..
173  REAL alphasq, realone, realzero
174  parameter( alphasq = 0.01e0, realone = 1.0e0,
175  \$ realzero = 0.0e0 )
176  REAL negone, one, zero
177  parameter( negone = -1.0e0, one = 1.0e0, zero = 0.0e0 )
178 * ..
179 * .. Local Scalars ..
180  INTEGER i
181  REAL normsq1, normsq2, scl1, scl2, ssq1, ssq2
182 * ..
183 * .. External Subroutines ..
184  EXTERNAL sgemv, slassq, xerbla
185 * ..
186 * .. Intrinsic Function ..
187  INTRINSIC max
188 * ..
189 * .. Executable Statements ..
190 *
191 * Test input arguments
192 *
193  info = 0
194  IF( m1 .LT. 0 ) THEN
195  info = -1
196  ELSE IF( m2 .LT. 0 ) THEN
197  info = -2
198  ELSE IF( n .LT. 0 ) THEN
199  info = -3
200  ELSE IF( incx1 .LT. 1 ) THEN
201  info = -5
202  ELSE IF( incx2 .LT. 1 ) THEN
203  info = -7
204  ELSE IF( ldq1 .LT. max( 1, m1 ) ) THEN
205  info = -9
206  ELSE IF( ldq2 .LT. max( 1, m2 ) ) THEN
207  info = -11
208  ELSE IF( lwork .LT. n ) THEN
209  info = -13
210  END IF
211 *
212  IF( info .NE. 0 ) THEN
213  CALL xerbla( 'SORBDB6', -info )
214  RETURN
215  END IF
216 *
217 * First, project X onto the orthogonal complement of Q's column
218 * space
219 *
220  scl1 = realzero
221  ssq1 = realone
222  CALL slassq( m1, x1, incx1, scl1, ssq1 )
223  scl2 = realzero
224  ssq2 = realone
225  CALL slassq( m2, x2, incx2, scl2, ssq2 )
226  normsq1 = scl1**2*ssq1 + scl2**2*ssq2
227 *
228  IF( m1 .EQ. 0 ) THEN
229  DO i = 1, n
230  work(i) = zero
231  END DO
232  ELSE
233  CALL sgemv( 'C', m1, n, one, q1, ldq1, x1, incx1, zero, work,
234  \$ 1 )
235  END IF
236 *
237  CALL sgemv( 'C', m2, n, one, q2, ldq2, x2, incx2, one, work, 1 )
238 *
239  CALL sgemv( 'N', m1, n, negone, q1, ldq1, work, 1, one, x1,
240  \$ incx1 )
241  CALL sgemv( 'N', m2, n, negone, q2, ldq2, work, 1, one, x2,
242  \$ incx2 )
243 *
244  scl1 = realzero
245  ssq1 = realone
246  CALL slassq( m1, x1, incx1, scl1, ssq1 )
247  scl2 = realzero
248  ssq2 = realone
249  CALL slassq( m2, x2, incx2, scl2, ssq2 )
250  normsq2 = scl1**2*ssq1 + scl2**2*ssq2
251 *
252 * If projection is sufficiently large in norm, then stop.
253 * If projection is zero, then stop.
254 * Otherwise, project again.
255 *
256  IF( normsq2 .GE. alphasq*normsq1 ) THEN
257  RETURN
258  END IF
259 *
260  IF( normsq2 .EQ. zero ) THEN
261  RETURN
262  END IF
263 *
264  normsq1 = normsq2
265 *
266  DO i = 1, n
267  work(i) = zero
268  END DO
269 *
270  IF( m1 .EQ. 0 ) THEN
271  DO i = 1, n
272  work(i) = zero
273  END DO
274  ELSE
275  CALL sgemv( 'C', m1, n, one, q1, ldq1, x1, incx1, zero, work,
276  \$ 1 )
277  END IF
278 *
279  CALL sgemv( 'C', m2, n, one, q2, ldq2, x2, incx2, one, work, 1 )
280 *
281  CALL sgemv( 'N', m1, n, negone, q1, ldq1, work, 1, one, x1,
282  \$ incx1 )
283  CALL sgemv( 'N', m2, n, negone, q2, ldq2, work, 1, one, x2,
284  \$ incx2 )
285 *
286  scl1 = realzero
287  ssq1 = realone
288  CALL slassq( m1, x1, incx1, scl1, ssq1 )
289  scl2 = realzero
290  ssq2 = realone
291  CALL slassq( m1, x1, incx1, scl1, ssq1 )
292  normsq2 = scl1**2*ssq1 + scl2**2*ssq2
293 *
294 * If second projection is sufficiently large in norm, then do
295 * nothing more. Alternatively, if it shrunk significantly, then
296 * truncate it to zero.
297 *
298  IF( normsq2 .LT. alphasq*normsq1 ) THEN
299  DO i = 1, m1
300  x1(i) = zero
301  END DO
302  DO i = 1, m2
303  x2(i) = zero
304  END DO
305  END IF
306 *
307  RETURN
308 *
309 * End of SORBDB6
310 *
subroutine sgemv(TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
SGEMV
Definition: sgemv.f:158
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine slassq(N, X, INCX, SCALE, SUMSQ)
SLASSQ updates a sum of squares represented in scaled form.
Definition: slassq.f:105
Here is the call graph for this function:
Here is the caller graph for this function: